W
fld
'
=
∫
V
∫
0
H
0
BdH
dV
size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } = Int rSub {V} { left ( Int rSub { size 8{0} } rSup { size 8{H rSub { size 6{0} } } } { ital "BdH"} right )} size 12{ ital "dV"}} {} (3.50)
W
fld
'
=
∫
v
μH
2
2
dV
size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } = Int rSub { size 8{v} } { { {μH rSup { size 8{2} } } over {2} } } ital "dV"} {} (3.51)
For permanent-magnet (hard) materials
W
fld
'
=
∫
v
∫
H
c
H
0
BdH
dV
size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } = Int rSub {v} { left ( Int rSub { size 8{H rSub { size 6{c} } } } rSup {H rSub { size 6{0} } } { ital "BdH"} right )} size 12{ ital "dV"}} {} (3.52)
For a magnetically-linear system, the energy and coenergy (densities) are numerically equal:
λ
2
/
2L
=
1
2
Li
2
,
B
2
/
2μ
=
1
2
μH
2
size 12{λ rSup { size 8{2} } /2L= { {1} over {2} } ital "Li" rSup { size 8{2} } ," "B rSup { size 8{2} } /2μ= { {1} over {2} } μH rSup { size 8{2} } } {} . For a nonlinear system in which
λ
size 12{λ} {} and i or B and H are not linearly proportional, the two functions are not even numerically equal.
W
fld
+
W
fld
'
=
λi
size 12{W rSub { size 8{ ital "fld"} } + { {W}} sup { ' } rSub { size 8{ ital "fld"} } =λi} {} (3.53)
Figure 3.5Graphical interpretation of energy and coenergy in a singly-excited system.
Consider the relay in Fig. 3.3. Assume the relay armature is at position x so that the device operating at point a in Fig. 3.6. Note that
f
fld
=
−
∂
W
fld
(
λ
,
x
)
∂
x
∣
λ
≃
lim
Δx
→
0
−
ΔW
fld
Δx
∣
λ
and
f
fld
=
∂
W
fld
'
(
i
,
x
)
∂
x
∣
i
≃
lim
Δx
→
0
Δ
W
fld
'
Δx
∣
i
size 12{f rSub { size 8{ ital "fld"} } = - { { partial W rSub { size 8{ ital "fld"} } \( λ,x \) } over { partial x} } \rline rSub { size 8{λ} } simeq {"lim"} cSub { size 8{Δx rightarrow 0} } { { - ΔW rSub { size 8{ ital "fld"} } } over {Δx} } \rline rSub { size 8{λ} } " and "f rSub { size 8{ ital "fld"} } = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) } over { partial x} } \rline rSub { size 8{i} } simeq {"lim"} cSub { size 8{Δx rightarrow 0} } { {Δ { {W}} sup { ' } rSub { size 8{ ital "fld"} } } over {Δx} } \rline rSub { size 8{i} } } {}
Figure 3.6Effect of
Δ
size 12{Δ} {} x on the energy and coenergy of a singly-excited device:
(a) change of energy with
λ
size 12{λ} {} held constant; (b) change of coenergy with i held constant.
The force acts in a direction to decrease the magnetic field stored energy at constant flux or to increase the coenergy at constant current.
In a singly-excited device, the force acts to increase the inductance by pulling on members so as to reduce the reluctance of the magnetic path linking the winding.
§3.6 Multiply-Excited Magnetic Field Systems
Many electromechanical devices have multiple electrical terminals.
Measurement systems: torque proportional to two electric signals; power as the product of voltage and current.
Energy conversion devices: multiply-excited magnetic field system.
A simple system with two electrical terminals and one mechanical terminal: Fig.3.7.
Three independent variables:
θ
,
λ
1
,
λ
2
size 12{ left lbrace θ,λ rSub { size 8{1} } ,λ rSub { size 8{2} } right rbrace } {} ,
θ
,
i
1
,
i
2
size 12{ left lbrace θ,i rSub { size 8{1} } ,i rSub { size 8{2} } right rbrace } {} ,
θ
,
λ
1
,
i
2
size 12{ left lbrace θ,λ rSub { size 8{1} } ,i rSub { size 8{2} } right rbrace } {} , or
θ
,
i
1
,
λ
2
size 12{ left lbrace θ,i rSub { size 8{1} } ,λ rSub { size 8{2} } right rbrace } {}
dW
fld
(
λ
1
,
λ
2
,
θ
)
=
i
1
dλ
1
+
i
2
dλ
2
−
T
fld
dθ
size 12{ ital "dW" rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1} } ,λ rSub { size 8{2} } ,θ \) =i rSub { size 8{1} } dλ rSub { size 8{1} } +i rSub { size 8{2} } dλ rSub { size 8{2} } - T rSub { size 8{ ital "fld"} } dθ} {} (3.54)
Figure 3.7Multiply-excited magnetic energy storage system.
i
1
=
∂
W
fld
(
λ
1
,
λ
2
,
θ
)
∂
λ
1
∣
λ
2
,
θ
size 12{i rSub { size 8{1} } = { { partial W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1} } ,λ rSub { size 8{2} } ,θ \) } over { partial λ rSub { size 8{1} } } } \rline rSub { size 8{λ rSub { size 6{2} } ,θ} } } {} (3.55)
i
2
=
∂
W
fld
(
λ
1
,
λ
2
,
θ
)
∂
λ
2
∣
λ
1
,
θ
size 12{i rSub { size 8{2} } = { { partial W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1} } ,λ rSub { size 8{2} } ,θ \) } over { partial λ rSub { size 8{2} } } } \rline rSub { size 8{λ rSub { size 6{1} } ,θ} } } {} (3.56)
T
fld
=
−
∂
W
fld
(
λ
1
,
λ
2
,
θ
)
∂
θ
∣
λ
1
,
λ
2
size 12{T rSub { size 8{ ital "fld"} } = - { { partial W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1} } ,λ rSub { size 8{2} } ,θ \) } over { partial θ} } \rline rSub { size 8{λ rSub { size 6{1} } ,λ rSub { size 6{2} } } } } {} (3.57)
To find
W
fld
size 12{W rSub { size 8{ ital "fld"} } } {} , use the path of integration in Fig. 3.14.
W
fld
(
λ
1
0
,
λ
2
0
,
θ
0
)
=
∫
0
λ
2
0
i
2
(
λ
1
=
0,
λ
2
,
θ
=
θ
0
)
dλ
2
+
∫
0
λ
1
0
i
1
(
λ
1
,
λ
2
=
λ
2
0
,
θ
=
θ
0
)
dλ
1
size 12{W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1 rSub { size 6{0} } } } ,λ rSub {2 rSub { size 6{0} } } size 12{,θ rSub {0} } size 12{ \) = Int rSub {0} rSup {λ rSub { size 6{2 rSub {0} } } } {i rSub {2} } } size 12{ \( λ rSub {1} } size 12{ {}=0,λ rSub {2} } size 12{,θ=θ rSub {0} } size 12{ \) dλ rSub {2} } size 12{+ Int rSub {0} rSup {λ rSub { size 6{1 rSub {0} } } } {i rSub {1} } } size 12{ \( λ rSub {1} } size 12{,λ rSub {2} } size 12{ {}=λ rSub {2 rSub { size 6{0} } } } size 12{,θ=θ rSub {0} } size 12{ \) dλ rSub {1} }} {} (3.58)
Figure 3.8Integration path to obtain
W
fld
(
λ
1
0
,
λ
2
0
,
θ
0
)
size 12{W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1 rSub { size 6{0} } } } ,λ rSub {2 rSub { size 6{0} } } size 12{,θ rSub {0} } size 12{ \) }} {} .
In a magnetically-linear system,
λ
1
=
L
11
i
1
+
L
12
i
2
size 12{λ rSub { size 8{1} } =L rSub { size 8{"11"} } i rSub { size 8{1} } +L rSub { size 8{"12"} } i rSub { size 8{2} } } {} (3.59)
λ
2
=
L
21
i
1
+
L
22
i
2
size 12{λ rSub { size 8{2} } =L rSub { size 8{"21"} } i rSub { size 8{1} } +L rSub { size 8{"22"} } i rSub { size 8{2} } } {} (3.60)
L
12
=
L
21
size 12{L rSub { size 8{"12"} } =L rSub { size 8{"21"} } } {} (3.61)
Note that
L
ij
=
L
ij
(
θ
)
size 12{L rSub { size 8{ ital "ij"} } =L rSub { size 8{ ital "ij"} } \( θ \) } {}
i
1
=
L
22
λ
1
−
L
12
λ
2
D
size 12{i rSub { size 8{1} } = { {L rSub { size 8{"22"} } λ rSub { size 8{1} } - L rSub { size 8{"12"} } λ rSub { size 8{2} } } over {D} } } {} (3.62)
i
2
=
−
L
21
λ
1
+
L
11
λ
2
D
size 12{i rSub { size 8{2} } = { { - L rSub { size 8{"21"} } λ rSub { size 8{1} } +L rSub { size 8{"11"} } λ rSub { size 8{2} } } over {D} } } {} (3.63)
D
=
L
11
L
22
−
L
12
L
21
size 12{D=L rSub { size 8{"11"} } L rSub { size 8{"22"} } - L rSub { size 8{"12"} } L rSub { size 8{"21"} } } {} (3.64)
The energy for this linear system is
W
fld
(
λ
1
0
,
λ
2
0
,
θ
0
)
=
∫
0
λ
2
0
L
11
(
θ
0
)
λ
2
D
(
θ
0
)
dλ
2
+
∫
(
L
22
(
θ
0
)
λ
1
−
L
12
(
θ
0
)
λ
2
0
)
D
(
θ
0
)
=
1
2D
(
θ
0
)
L
11
(
θ
0
)
λ
2
0
2
+
1
2D
(
θ
0
)
L
22
(
θ
0
)
λ
1
0
2
−
L
12
(
θ
0
)
D
(
θ
0
)
λ
1
0
λ
2
0
alignl { stack {
size 12{W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1 rSub { size 6{0} } } } ,λ rSub {2 rSub { size 6{0} } } size 12{,θ rSub {0} } size 12{ \) = Int rSub {0} rSup {λ rSub { size 6{2 rSub {0} } } } { { {L rSub {"11"} size 12{ \( θ rSub {0} } size 12{ \) λ rSub {2} }} over { size 12{D \( θ rSub {0} size 12{ \) }} } } } } size 12{dλ rSub {2} } size 12{+ Int rSub {} rSup {} { { { \( L rSub {"22"} size 12{ \( θ rSub {0} } size 12{ \) λ rSub {1} } size 12{ - L rSub {"12"} } size 12{ \( θ rSub {0} } size 12{ \) λ rSub {2 rSub { size 6{0} } } } size 12{ \) }} over {D \( θ rSub {0} size 12{ \) }} } } }} {} #size 12{" "= { {1} over {2D \( θ rSub { size 8{0} } \) } } L rSub { size 8{"11"} } \( θ rSub { size 8{0} } \) λ rSub { size 8{2 rSub { size 6{0} } } } rSup {2} size 12{+ { {1} over {2D \( θ rSub {0} size 12{ \) }} } L rSub {"22"} } size 12{ \( θ rSub {0} } size 12{ \) λ rSub {1 rSub { size 6{0} } } rSup {2} } size 12{ - { {L rSub {"12"} size 12{ \( θ rSub {0} } size 12{ \) }} over {D \( θ rSub {0} size 12{ \) }} } λ rSub {1 rSub { size 6{0} } } } size 12{λ rSub {2 rSub { size 6{0} } } }} {}
} } {} (3.65)
Coenergy function for a system with two windings can be defined as:
W
fld
'
(
i
1
,
i
2
,
θ
)
=
λ
1
i
1
+
λ
2
i
2
−
W
fld
size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ \) =λ rSub { size 8{1} } i rSub { size 8{1} } +λ rSub { size 8{2} } i rSub { size 8{2} } - W rSub { size 8{ ital "fld"} } } {} (3.66)
{}
d
W
fld
'
(
i
1
,
i
2
,
θ
)
=
λ
1
di
1
+
λ
2
di
2
+
T
fld
dθ
size 12{d { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ \) =λ rSub { size 8{1} } ital "di" rSub { size 8{1} } +λ rSub { size 8{2} } ital "di" rSub { size 8{2} } +T rSub { size 8{ ital "fld"} } dθ} {} (3.67)
λ
1
=
∂
W
fld
(
i
1
,
i
2
,
θ
)
∂
i
1
∣
i
2
,
θ
size 12{λ rSub { size 8{1} } = { { partial W rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ \) } over { partial i rSub { size 8{1} } } } \rline rSub { size 8{i rSub { size 6{2} } ,θ} } } {} (3.68)
λ
2
=
∂
W
fld
'
(
i
1
,
i
2
,
θ
)
∂
i
2
∣
i
1
,
i
2
size 12{λ rSub { size 8{2} } = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ \) } over { partial i rSub { size 8{2} } } } \rline rSub { size 8{i rSub { size 6{1} } ,i rSub { size 6{2} } } } } {} (3.69)
{}
T
fld
=
∂
W
fld
'
(
i
1
,
i
2
,
θ
)
∂
θ
∣
i
1
,
i
2
size 12{T rSub { size 8{ ital "fld"} } = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ \) } over { partial θ} } \rline rSub { size 8{i rSub { size 6{1} } ,i rSub { size 6{2} } } } } {} (3.70)
W
fld
'
(
i
1
,
i
2
,
θ
0
)
=
∫
0
i
2
0
λ
2
(
i
1
=
0,
i
2
,
θ
=
θ
0
)
di
2
+
∫
0
λ
1
0
λ
1
(
i
1
,
i
2
=
i
2
0
,
θ
=
θ
0
)
di
1
size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ rSub { size 8{0} } \) = Int rSub { size 8{0} } rSup { size 8{i rSub { size 6{2 rSub {0} } } } } {λ rSub { size 8{2} } } \( i rSub {1} size 12{ {}=0,i rSub {2} } size 12{,θ=θ rSub {0} } size 12{ \) ital "di" rSub {2} } size 12{+ Int rSub {0} rSup {λ rSub { size 6{1 rSub {0} } } } {λ rSub {1} } } size 12{ \( i rSub {1} } size 12{,i rSub {2} } size 12{ {}=i rSub {2 rSub { size 6{0} } } } size 12{,θ=θ rSub {0} } size 12{ \) ital "di" rSub {1} }} {} (3.71)
W
'
(
i
1
,
i
2
,
θ
0
)
=
1
2
L
11
(
θ
)
i
1
2
+
1
2
L
22
(
θ
)
i
2
2
+
L
12
(
θ
)
i
1
i
2
size 12{ { {W}} sup { ' } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ rSub { size 8{0} } \) = { {1} over {2} } L rSub { size 8{"11"} } \( θ \) i rSub { size 8{1} } rSup { size 8{2} } + { {1} over {2} } L rSub { size 8{"22"} } \( θ \) i rSub { size 8{2} } rSup { size 8{2} } +L rSub { size 8{"12"} } \( θ \) i rSub { size 8{1} } i rSub { size 8{2} } } {} (3.72)
T
fld
=
∂
W
fld
'
(
i
1
,
i
2
,
θ
0
)
∂
θ
∣
i
1
,
i
2
=
i
1
2
2
dL
11
(
θ
)
dθ
+
i
2
2
2
dL
22
(
θ
)
dθ
+
i
1
i
2
dL
12
(
θ
)
dθ
size 12{T rSub { size 8{ ital "fld"} } = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ rSub { size 8{0} } \) } over { partial θ} } \rline rSub { size 8{i rSub { size 6{1} } ,i rSub { size 6{2} } } } = { {i rSub {1} rSup {2} } over { size 12{2} } } { { size 12{ ital "dL" rSub {"11"} size 12{ \( θ \) }} } over { size 12{dθ} } } size 12{+ { {i rSub {2} rSup {2} } over { size 12{2} } } { { size 12{ ital "dL" rSub {"22"} size 12{ \( θ \) }} } over { size 12{dθ} } } } size 12{+i rSub {1} } size 12{i rSub {2} { { size 12{ ital "dL" rSub {"12"} size 12{ \( θ \) }} } over { size 12{dθ} } } }} {} (3.73)
Note that (3.70) is simpler than (3.57). That is, the coenergy function is a relatively simple function of displacement.
The use of a coenergy function of the terminal currents simplifies the determination of torque or force.
Systems with more than two electrical terminals are handled in analogous fashion.
System with linear displacement:
W
fld
(
λ
1
0
,
λ
2
0
,
x
0
)
=
∫
0
λ
2
0
i
2
(
λ
1
=
0,
λ
2
,
x
=
x
0
)
dλ
2
+
∫
0
λ
1
0
i
1
(
λ
1
,
λ
2
=
λ
2
0
,
x
=
x
0
)
dλ
1
size 12{W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1 rSub { size 6{0} } } } ,λ rSub {2 rSub { size 6{0} } } size 12{,x rSub {0} } size 12{ \) = Int rSub {0} rSup {λ rSub { size 6{2 rSub {0} } } } {i rSub {2} } } size 12{ \( λ rSub {1} } size 12{ {}=0,λ rSub {2} } size 12{,x=x rSub {0} } size 12{ \) dλ rSub {2} } size 12{+ Int rSub {0} rSup {λ rSub { size 6{1 rSub {0} } } } {i rSub {1} } } size 12{ \( λ rSub {1} } size 12{,λ rSub {2} } size 12{ {}=λ rSub {2 rSub { size 6{0} } } } size 12{,x=x rSub {0} } size 12{ \) dλ rSub {1} }} {} (3.74)
W
fld
'
(
i
1
0
,
i
2
0
,
x
0
)
=
∫
0
λ
2
0
λ
2
(
i
1
,
i
2
,
x
=
x
0
)
di
2
+
∫
0
λ
1
0
λ
1
(
i
1
,
i
2
=
i
2
0
,
x
=
x
0
)
di
1
size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1 rSub { size 6{0} } } } ,i rSub {2 rSub { size 6{0} } } size 12{,x rSub {0} } size 12{ \) = Int rSub {0} rSup {λ rSub { size 6{2 rSub {0} } } } {λ rSub {2} } } size 12{ \( i rSub {1} } size 12{,i rSub {2} } size 12{,x=x rSub {0} } size 12{ \) ital "di" rSub {2} } size 12{+ Int rSub {0} rSup {λ rSub { size 6{1 rSub {0} } } } {λ rSub {1} } } size 12{ \( i rSub {1} } size 12{,i rSub {2} } size 12{ {}=i rSub {2 rSub { size 6{0} } } } size 12{,x=x rSub {0} } size 12{ \) ital "di" rSub {1} }} {}
f
fld
=
−
∂
W
fld
(
λ
1
,
λ
2
,
x
)
∂
x
∣
λ
1
,
λ
2
size 12{f rSub { size 8{ ital "fld"} } = - { { partial W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1} } ,λ rSub { size 8{2} } ,x \) } over { partial x} } \rline rSub { size 8{λ rSub { size 6{1} } ,λ rSub { size 6{2} } } } } {} (3.76)
f
fld
=
−
∂
W
fld
'
(
i
1
,
i
2
,
x
)
∂
x
∣
i
1
,
i
2
size 12{f rSub { size 8{ ital "fld"} } = - { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,x \) } over { partial x} } \rline rSub { size 8{i rSub { size 6{1} } ,i rSub { size 6{2} } } } } {} (3.77)
For a magnetically-linear system,
W
fld
'
(
i
1
,
i
2
,
x
)
=
1
2
L
11
(
x
)
i
1
2
+
L
22
(
x
)
i
2
2
+
L
12
(
x
)
i
1
i
2
size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,x \) = { {1} over {2} } L rSub { size 8{"11"} } \( x \) i rSub { size 8{1} } rSup { size 8{2} } +L rSub { size 8{"22"} } \( x \) i rSub { size 8{2} } rSup { size 8{2} } +L"" lSub { size 8{"12"} } \( x \) i rSub { size 8{1} } i rSub { size 8{2} } } {} (3.78)
f
fld
=
i
1
2
2
dL
11
(
x
)
dx
+
i
2
2
2
dL
22
(
x
)
dx
+
i
1
i
2
dL
12
(
x
)
dx
size 12{f rSub { size 8{ ital "fld"} } = { {i rSub { size 8{1} } rSup { size 8{2} } } over {2} } { { ital "dL" rSub { size 8{"11"} } \( x \) } over { ital "dx"} } + { {i rSub { size 8{2} } rSup { size 8{2} } } over {2} } { { ital "dL" rSub { size 8{"22"} } \( x \) } over { ital "dx"} } +i rSub { size 8{1} } i rSub { size 8{2} } { { ital "dL" rSub { size 8{"12"} } \( x \) } over { ital "dx"} } } {} (3.79)