<< Chapter < Page Chapter >> Page >

W fld ' = V 0 H 0 BdH dV size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } = Int rSub {V} { left ( Int rSub { size 8{0} } rSup { size 8{H rSub { size 6{0} } } } { ital "BdH"} right )} size 12{ ital "dV"}} {} (3.50)

W fld ' = v μH 2 2 dV size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } = Int rSub { size 8{v} } { { {μH rSup { size 8{2} } } over {2} } } ital "dV"} {} (3.51)

For permanent-magnet (hard) materials

W fld ' = v H c H 0 BdH dV size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } = Int rSub {v} { left ( Int rSub { size 8{H rSub { size 6{c} } } } rSup {H rSub { size 6{0} } } { ital "BdH"} right )} size 12{ ital "dV"}} {} (3.52)

  • For a magnetically-linear system, the energy and coenergy (densities) are numerically equal: λ 2 / 2L = 1 2 Li 2 , B 2 / = 1 2 μH 2 size 12{λ rSup { size 8{2} } /2L= { {1} over {2} } ital "Li" rSup { size 8{2} } ," "B rSup { size 8{2} } /2μ= { {1} over {2} } μH rSup { size 8{2} } } {} . For a nonlinear system in which λ size 12{λ} {} and i or B and H are not linearly proportional, the two functions are not even numerically equal.

W fld + W fld ' = λi size 12{W rSub { size 8{ ital "fld"} } + { {W}} sup { ' } rSub { size 8{ ital "fld"} } =λi} {} (3.53)

Figure 3.5Graphical interpretation of energy and coenergy in a singly-excited system.

  • Consider the relay in Fig. 3.3. Assume the relay armature is at position x so that the device operating at point a in Fig. 3.6. Note that

f fld = W fld ( λ , x ) x λ lim Δx 0 ΔW fld Δx λ and f fld = W fld ' ( i , x ) x i lim Δx 0 Δ W fld ' Δx i size 12{f rSub { size 8{ ital "fld"} } = - { { partial W rSub { size 8{ ital "fld"} } \( λ,x \) } over { partial x} } \rline rSub { size 8{λ} } simeq {"lim"} cSub { size 8{Δx rightarrow 0} } { { - ΔW rSub { size 8{ ital "fld"} } } over {Δx} } \rline rSub { size 8{λ} } " and "f rSub { size 8{ ital "fld"} } = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i,x \) } over { partial x} } \rline rSub { size 8{i} } simeq {"lim"} cSub { size 8{Δx rightarrow 0} } { {Δ { {W}} sup { ' } rSub { size 8{ ital "fld"} } } over {Δx} } \rline rSub { size 8{i} } } {}

Figure 3.6Effect of Δ size 12{Δ} {} x on the energy and coenergy of a singly-excited device:

(a) change of energy with λ size 12{λ} {} held constant; (b) change of coenergy with i held constant.

  • The force acts in a direction to decrease the magnetic field stored energy at constant flux or to increase the coenergy at constant current.
  • In a singly-excited device, the force acts to increase the inductance by pulling on members so as to reduce the reluctance of the magnetic path linking the winding.

§3.6 Multiply-Excited Magnetic Field Systems

  • Many electromechanical devices have multiple electrical terminals.
  • Measurement systems: torque proportional to two electric signals; power as the product of voltage and current.
  • Energy conversion devices: multiply-excited magnetic field system.
  • A simple system with two electrical terminals and one mechanical terminal: Fig.3.7.
    • Three independent variables: θ , λ 1 , λ 2 size 12{ left lbrace θ,λ rSub { size 8{1} } ,λ rSub { size 8{2} } right rbrace } {} , θ , i 1 , i 2 size 12{ left lbrace θ,i rSub { size 8{1} } ,i rSub { size 8{2} } right rbrace } {} , θ , λ 1 , i 2 size 12{ left lbrace θ,λ rSub { size 8{1} } ,i rSub { size 8{2} } right rbrace } {} , or θ , i 1 , λ 2 size 12{ left lbrace θ,i rSub { size 8{1} } ,λ rSub { size 8{2} } right rbrace } {}

dW fld ( λ 1 , λ 2 , θ ) = i 1 1 + i 2 2 T fld size 12{ ital "dW" rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1} } ,λ rSub { size 8{2} } ,θ \) =i rSub { size 8{1} } dλ rSub { size 8{1} } +i rSub { size 8{2} } dλ rSub { size 8{2} } - T rSub { size 8{ ital "fld"} } dθ} {} (3.54)

Figure 3.7Multiply-excited magnetic energy storage system.

i 1 = W fld ( λ 1 , λ 2 , θ ) λ 1 λ 2 , θ size 12{i rSub { size 8{1} } = { { partial W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1} } ,λ rSub { size 8{2} } ,θ \) } over { partial λ rSub { size 8{1} } } } \rline rSub { size 8{λ rSub { size 6{2} } ,θ} } } {} (3.55)

i 2 = W fld ( λ 1 , λ 2 , θ ) λ 2 λ 1 , θ size 12{i rSub { size 8{2} } = { { partial W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1} } ,λ rSub { size 8{2} } ,θ \) } over { partial λ rSub { size 8{2} } } } \rline rSub { size 8{λ rSub { size 6{1} } ,θ} } } {} (3.56)

T fld = W fld ( λ 1 , λ 2 , θ ) θ λ 1 , λ 2 size 12{T rSub { size 8{ ital "fld"} } = - { { partial W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1} } ,λ rSub { size 8{2} } ,θ \) } over { partial θ} } \rline rSub { size 8{λ rSub { size 6{1} } ,λ rSub { size 6{2} } } } } {} (3.57)

To find W fld size 12{W rSub { size 8{ ital "fld"} } } {} , use the path of integration in Fig. 3.14.

W fld ( λ 1 0 , λ 2 0 , θ 0 ) = 0 λ 2 0 i 2 ( λ 1 = 0, λ 2 , θ = θ 0 ) 2 + 0 λ 1 0 i 1 ( λ 1 , λ 2 = λ 2 0 , θ = θ 0 ) 1 size 12{W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1 rSub { size 6{0} } } } ,λ rSub {2 rSub { size 6{0} } } size 12{,θ rSub {0} } size 12{ \) = Int rSub {0} rSup {λ rSub { size 6{2 rSub {0} } } } {i rSub {2} } } size 12{ \( λ rSub {1} } size 12{ {}=0,λ rSub {2} } size 12{,θ=θ rSub {0} } size 12{ \) dλ rSub {2} } size 12{+ Int rSub {0} rSup {λ rSub { size 6{1 rSub {0} } } } {i rSub {1} } } size 12{ \( λ rSub {1} } size 12{,λ rSub {2} } size 12{ {}=λ rSub {2 rSub { size 6{0} } } } size 12{,θ=θ rSub {0} } size 12{ \) dλ rSub {1} }} {} (3.58)

Figure 3.8Integration path to obtain W fld ( λ 1 0 , λ 2 0 , θ 0 ) size 12{W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1 rSub { size 6{0} } } } ,λ rSub {2 rSub { size 6{0} } } size 12{,θ rSub {0} } size 12{ \) }} {} .

  • In a magnetically-linear system,

λ 1 = L 11 i 1 + L 12 i 2 size 12{λ rSub { size 8{1} } =L rSub { size 8{"11"} } i rSub { size 8{1} } +L rSub { size 8{"12"} } i rSub { size 8{2} } } {} (3.59)

λ 2 = L 21 i 1 + L 22 i 2 size 12{λ rSub { size 8{2} } =L rSub { size 8{"21"} } i rSub { size 8{1} } +L rSub { size 8{"22"} } i rSub { size 8{2} } } {} (3.60)

L 12 = L 21 size 12{L rSub { size 8{"12"} } =L rSub { size 8{"21"} } } {} (3.61)

Note that L ij = L ij ( θ ) size 12{L rSub { size 8{ ital "ij"} } =L rSub { size 8{ ital "ij"} } \( θ \) } {}

i 1 = L 22 λ 1 L 12 λ 2 D size 12{i rSub { size 8{1} } = { {L rSub { size 8{"22"} } λ rSub { size 8{1} } - L rSub { size 8{"12"} } λ rSub { size 8{2} } } over {D} } } {} (3.62)

i 2 = L 21 λ 1 + L 11 λ 2 D size 12{i rSub { size 8{2} } = { { - L rSub { size 8{"21"} } λ rSub { size 8{1} } +L rSub { size 8{"11"} } λ rSub { size 8{2} } } over {D} } } {} (3.63)

D = L 11 L 22 L 12 L 21 size 12{D=L rSub { size 8{"11"} } L rSub { size 8{"22"} } - L rSub { size 8{"12"} } L rSub { size 8{"21"} } } {} (3.64)

The energy for this linear system is

W fld ( λ 1 0 , λ 2 0 , θ 0 ) = 0 λ 2 0 L 11 ( θ 0 ) λ 2 D ( θ 0 ) 2 + ( L 22 ( θ 0 ) λ 1 L 12 ( θ 0 ) λ 2 0 ) D ( θ 0 ) = 1 2D ( θ 0 ) L 11 ( θ 0 ) λ 2 0 2 + 1 2D ( θ 0 ) L 22 ( θ 0 ) λ 1 0 2 L 12 ( θ 0 ) D ( θ 0 ) λ 1 0 λ 2 0 alignl { stack { size 12{W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1 rSub { size 6{0} } } } ,λ rSub {2 rSub { size 6{0} } } size 12{,θ rSub {0} } size 12{ \) = Int rSub {0} rSup {λ rSub { size 6{2 rSub {0} } } } { { {L rSub {"11"} size 12{ \( θ rSub {0} } size 12{ \) λ rSub {2} }} over { size 12{D \( θ rSub {0} size 12{ \) }} } } } } size 12{dλ rSub {2} } size 12{+ Int rSub {} rSup {} { { { \( L rSub {"22"} size 12{ \( θ rSub {0} } size 12{ \) λ rSub {1} } size 12{ - L rSub {"12"} } size 12{ \( θ rSub {0} } size 12{ \) λ rSub {2 rSub { size 6{0} } } } size 12{ \) }} over {D \( θ rSub {0} size 12{ \) }} } } }} {} #size 12{" "= { {1} over {2D \( θ rSub { size 8{0} } \) } } L rSub { size 8{"11"} } \( θ rSub { size 8{0} } \) λ rSub { size 8{2 rSub { size 6{0} } } } rSup {2} size 12{+ { {1} over {2D \( θ rSub {0} size 12{ \) }} } L rSub {"22"} } size 12{ \( θ rSub {0} } size 12{ \) λ rSub {1 rSub { size 6{0} } } rSup {2} } size 12{ - { {L rSub {"12"} size 12{ \( θ rSub {0} } size 12{ \) }} over {D \( θ rSub {0} size 12{ \) }} } λ rSub {1 rSub { size 6{0} } } } size 12{λ rSub {2 rSub { size 6{0} } } }} {} } } {} (3.65)

  • Coenergy function for a system with two windings can be defined as:

W fld ' ( i 1 , i 2 , θ ) = λ 1 i 1 + λ 2 i 2 W fld size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ \) =λ rSub { size 8{1} } i rSub { size 8{1} } +λ rSub { size 8{2} } i rSub { size 8{2} } - W rSub { size 8{ ital "fld"} } } {} (3.66)

{} d W fld ' ( i 1 , i 2 , θ ) = λ 1 di 1 + λ 2 di 2 + T fld size 12{d { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ \) =λ rSub { size 8{1} } ital "di" rSub { size 8{1} } +λ rSub { size 8{2} } ital "di" rSub { size 8{2} } +T rSub { size 8{ ital "fld"} } dθ} {} (3.67)

λ 1 = W fld ( i 1 , i 2 , θ ) i 1 i 2 , θ size 12{λ rSub { size 8{1} } = { { partial W rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ \) } over { partial i rSub { size 8{1} } } } \rline rSub { size 8{i rSub { size 6{2} } ,θ} } } {} (3.68)

λ 2 = W fld ' ( i 1 , i 2 , θ ) i 2 i 1 , i 2 size 12{λ rSub { size 8{2} } = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ \) } over { partial i rSub { size 8{2} } } } \rline rSub { size 8{i rSub { size 6{1} } ,i rSub { size 6{2} } } } } {} (3.69)

{} T fld = W fld ' ( i 1 , i 2 , θ ) θ i 1 , i 2 size 12{T rSub { size 8{ ital "fld"} } = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ \) } over { partial θ} } \rline rSub { size 8{i rSub { size 6{1} } ,i rSub { size 6{2} } } } } {} (3.70)

W fld ' ( i 1 , i 2 , θ 0 ) = 0 i 2 0 λ 2 ( i 1 = 0, i 2 , θ = θ 0 ) di 2 + 0 λ 1 0 λ 1 ( i 1 , i 2 = i 2 0 , θ = θ 0 ) di 1 size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ rSub { size 8{0} } \) = Int rSub { size 8{0} } rSup { size 8{i rSub { size 6{2 rSub {0} } } } } {λ rSub { size 8{2} } } \( i rSub {1} size 12{ {}=0,i rSub {2} } size 12{,θ=θ rSub {0} } size 12{ \) ital "di" rSub {2} } size 12{+ Int rSub {0} rSup {λ rSub { size 6{1 rSub {0} } } } {λ rSub {1} } } size 12{ \( i rSub {1} } size 12{,i rSub {2} } size 12{ {}=i rSub {2 rSub { size 6{0} } } } size 12{,θ=θ rSub {0} } size 12{ \) ital "di" rSub {1} }} {} (3.71)

  • For the linear system:

W ' ( i 1 , i 2 , θ 0 ) = 1 2 L 11 ( θ ) i 1 2 + 1 2 L 22 ( θ ) i 2 2 + L 12 ( θ ) i 1 i 2 size 12{ { {W}} sup { ' } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ rSub { size 8{0} } \) = { {1} over {2} } L rSub { size 8{"11"} } \( θ \) i rSub { size 8{1} } rSup { size 8{2} } + { {1} over {2} } L rSub { size 8{"22"} } \( θ \) i rSub { size 8{2} } rSup { size 8{2} } +L rSub { size 8{"12"} } \( θ \) i rSub { size 8{1} } i rSub { size 8{2} } } {} (3.72)

T fld = W fld ' ( i 1 , i 2 , θ 0 ) θ i 1 , i 2 = i 1 2 2 dL 11 ( θ ) + i 2 2 2 dL 22 ( θ ) + i 1 i 2 dL 12 ( θ ) size 12{T rSub { size 8{ ital "fld"} } = { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,θ rSub { size 8{0} } \) } over { partial θ} } \rline rSub { size 8{i rSub { size 6{1} } ,i rSub { size 6{2} } } } = { {i rSub {1} rSup {2} } over { size 12{2} } } { { size 12{ ital "dL" rSub {"11"} size 12{ \( θ \) }} } over { size 12{dθ} } } size 12{+ { {i rSub {2} rSup {2} } over { size 12{2} } } { { size 12{ ital "dL" rSub {"22"} size 12{ \( θ \) }} } over { size 12{dθ} } } } size 12{+i rSub {1} } size 12{i rSub {2} { { size 12{ ital "dL" rSub {"12"} size 12{ \( θ \) }} } over { size 12{dθ} } } }} {} (3.73)

  • Note that (3.70) is simpler than (3.57). That is, the coenergy function is a relatively simple function of displacement.
  • The use of a coenergy function of the terminal currents simplifies the determination of torque or force.
  • Systems with more than two electrical terminals are handled in analogous fashion.
    • System with linear displacement:

W fld ( λ 1 0 , λ 2 0 , x 0 ) = 0 λ 2 0 i 2 ( λ 1 = 0, λ 2 , x = x 0 ) 2 + 0 λ 1 0 i 1 ( λ 1 , λ 2 = λ 2 0 , x = x 0 ) 1 size 12{W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1 rSub { size 6{0} } } } ,λ rSub {2 rSub { size 6{0} } } size 12{,x rSub {0} } size 12{ \) = Int rSub {0} rSup {λ rSub { size 6{2 rSub {0} } } } {i rSub {2} } } size 12{ \( λ rSub {1} } size 12{ {}=0,λ rSub {2} } size 12{,x=x rSub {0} } size 12{ \) dλ rSub {2} } size 12{+ Int rSub {0} rSup {λ rSub { size 6{1 rSub {0} } } } {i rSub {1} } } size 12{ \( λ rSub {1} } size 12{,λ rSub {2} } size 12{ {}=λ rSub {2 rSub { size 6{0} } } } size 12{,x=x rSub {0} } size 12{ \) dλ rSub {1} }} {} (3.74)

W fld ' ( i 1 0 , i 2 0 , x 0 ) = 0 λ 2 0 λ 2 ( i 1 , i 2 , x = x 0 ) di 2 + 0 λ 1 0 λ 1 ( i 1 , i 2 = i 2 0 , x = x 0 ) di 1 size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1 rSub { size 6{0} } } } ,i rSub {2 rSub { size 6{0} } } size 12{,x rSub {0} } size 12{ \) = Int rSub {0} rSup {λ rSub { size 6{2 rSub {0} } } } {λ rSub {2} } } size 12{ \( i rSub {1} } size 12{,i rSub {2} } size 12{,x=x rSub {0} } size 12{ \) ital "di" rSub {2} } size 12{+ Int rSub {0} rSup {λ rSub { size 6{1 rSub {0} } } } {λ rSub {1} } } size 12{ \( i rSub {1} } size 12{,i rSub {2} } size 12{ {}=i rSub {2 rSub { size 6{0} } } } size 12{,x=x rSub {0} } size 12{ \) ital "di" rSub {1} }} {} 

f fld = W fld ( λ 1 , λ 2 , x ) x λ 1 , λ 2 size 12{f rSub { size 8{ ital "fld"} } = - { { partial W rSub { size 8{ ital "fld"} } \( λ rSub { size 8{1} } ,λ rSub { size 8{2} } ,x \) } over { partial x} } \rline rSub { size 8{λ rSub { size 6{1} } ,λ rSub { size 6{2} } } } } {} (3.76)

f fld = W fld ' ( i 1 , i 2 , x ) x i 1 , i 2 size 12{f rSub { size 8{ ital "fld"} } = - { { partial { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,x \) } over { partial x} } \rline rSub { size 8{i rSub { size 6{1} } ,i rSub { size 6{2} } } } } {} (3.77)

For a magnetically-linear system,

W fld ' ( i 1 , i 2 , x ) = 1 2 L 11 ( x ) i 1 2 + L 22 ( x ) i 2 2 + L 12 ( x ) i 1 i 2 size 12{ { {W}} sup { ' } rSub { size 8{ ital "fld"} } \( i rSub { size 8{1} } ,i rSub { size 8{2} } ,x \) = { {1} over {2} } L rSub { size 8{"11"} } \( x \) i rSub { size 8{1} } rSup { size 8{2} } +L rSub { size 8{"22"} } \( x \) i rSub { size 8{2} } rSup { size 8{2} } +L"" lSub { size 8{"12"} } \( x \) i rSub { size 8{1} } i rSub { size 8{2} } } {} (3.78)

f fld = i 1 2 2 dL 11 ( x ) dx + i 2 2 2 dL 22 ( x ) dx + i 1 i 2 dL 12 ( x ) dx size 12{f rSub { size 8{ ital "fld"} } = { {i rSub { size 8{1} } rSup { size 8{2} } } over {2} } { { ital "dL" rSub { size 8{"11"} } \( x \) } over { ital "dx"} } + { {i rSub { size 8{2} } rSup { size 8{2} } } over {2} } { { ital "dL" rSub { size 8{"22"} } \( x \) } over { ital "dx"} } +i rSub { size 8{1} } i rSub { size 8{2} } { { ital "dL" rSub { size 8{"12"} } \( x \) } over { ital "dx"} } } {} (3.79)

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Intergrated library system management. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10801/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Intergrated library system management' conversation and receive update notifications?

Ask