<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Discuss the role of carbohydrates in cells and in the extracellular materials of animals and plants
  • Explain the classifications of carbohydrates
  • List common monosaccharides, disaccharides, and polysaccharides

Carbohydrates

Most people are familiar with carbohydrates, one type of macromolecule, especially when it comes to what we eat. To lose weight, some individuals adhere to “low-carb” diets. Athletes, in contrast, often “carb-load” before important competitions to ensure that they have enough energy to compete at a high level. Carbohydrates are, in fact, an essential part of our diet; grains, fruits, and vegetables are all natural sources of carbohydrates. Carbohydrates provide energy to the body, particularly through glucose, a simple sugar that is a component of starch    and an ingredient in many staple foods. Carbohydrates also have other important functions in humans, animals, and plants.

Molecular structures

Carbohydrates can be represented by the stoichiometric formula (CH 2 O) n , where n is the number of carbons in the molecule. In other words, the ratio of carbon to hydrogen to oxygen is 1:2:1 in carbohydrate molecules. This formula also explains the origin of the term “carbohydrate”: the components are carbon (“carbo”) and the components of water (hence, “hydrate”). Carbohydrates are classified into three subtypes: monosaccharides, disaccharides, and polysaccharides.

Nomenclature

One issue with carbohydrate chemistry is the nomenclature. Here are a few quick and simple rules:

  1. Simple carbohydrates end with an "...ose"; such as glucose, lactose, or dexrose
  2. Simple carbohydrates can be classified based on the number of carbon atoms in the sugar, such as a triose (3-carbons), pentose (5-carbons)or hexose (6-carbons).
  3. Simple Carbohydrates can be classified based on the functional group found in the molecule, such as either a ketoses or aldoses
  4. Polysaccharides are often organized by the number of sugar molecules in the chain, such as a monosaccharide, disaccharide or trisaccharide.

These will be explained in detail below. For a short video on carbohydrate classification see the Khan academy video (10 minutes in length) by clicking here .

Monosaccharides

Monosaccharides (mono- = “one”; sacchar- = “sweet”) are simple sugars, the most common of which is glucose. In monosaccharides, the number of carbons usually ranges from three to seven. Most monosaccharide names end with the suffix -ose. If the sugar has an aldehyde group (the functional group with the structure R-CHO), it is known as an aldose, and if it has a ketone group (the functional group with the structure RC(=O)R'), it is known as a ketose. Depending on the number of carbons in the sugar, they also may be known as trioses (three carbons), pentoses (five carbons), and or hexoses (six carbons). See [link] for an illustration of the monosaccharides.

The molecular structures of glyceraldehyde, an aldose, and dihydroxyacetone, a ketose, are shown. Both sugars have a three-carbon backbone. Glyceraldehyde has a carbonyl group (c double bonded to O) at one end of the carbon chain with hydroxyl (OH) groups attached to the other carbons. Dihydroxyacetone has a carbonyl group in the middle of the chain and alcohol groups at each end. The molecular structures of linear forms of ribose, a pentose, and glucose, a hexose, are also shown. Both ribose and glucose are aldoses with a carbonyl group at the end of chain,and hydroxyl groups attached to the other carbons.
Monosaccharides are classified based on the position of their carbonyl group and the number of carbons in the backbone. Aldoses have a carbonyl group (indicated in green) at the end of the carbon chain, and ketoses have a carbonyl group in the middle of the carbon chain. Trioses, pentoses, and hexoses have three, five, and six carbon backbones, respectively.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Cellular macromolecules: bis2a modules 3.0 to 3.5. OpenStax CNX. Jun 15, 2015 Download for free at https://legacy.cnx.org/content/col11827/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cellular macromolecules: bis2a modules 3.0 to 3.5' conversation and receive update notifications?

Ask