<< Chapter < Page Chapter >> Page >
Usage of the Hough Circle Transform on a robot to detect yellow balls.

3.0 hardware introduction

This project had a two part goal: 1. Understand the Hough Transform and be able to detect circles using from-scratch code and 2. Implement the Hough Transform on hardware to create a robot that can detect yellow balls. This section will explain that hardware implementation in detail.

The robot

The Robot
An image of our robot with important system parts labeled.

The hardware that we used for this project was largely provided by the Rice Robotics Club which uses tools from Vex Robotics. The robot four-wheeled using Mechanum wheels which allow for strafing if they are rotated in the proper directions. To drive the wheels, the Vex Cortex onboard computer runs code in C to drive each of the four motors at the proper power levels. The cortex also receives information from a Gyroscope in order to determine what angle the robot is facing. Finally, a Raspberry Pi runs code in Python with a PiCamera to run the ball detection algorithm which transmits data to the Cortex using the UART protocol. Below we can see the block diagram for the robot's system.

Overall hardware system

Overall Hardware System
The system in its entirety. The Raspberry Pi system and Vex Cortex system are explained in detail in further sections.

3.1 raspberry pi system

We will now dive into the inner workings of the Raspberry Pi ball detection algorithm. The overall objective of the Raspberry Pi is to use images taken from the PiCamera and determine an angle for the robot to turn to as well as a single bit determining whether or not a ball is seen.

The raspberry pi system

Pi Detection System
Image capture comes in through the PiCamera hardware. The output is always a 5 character string over UART to the Cortex.

The first thing the pi does is capture an image using the PiCamera. This image capture can only be done as fast as the code can run. At 360x240 pixels, the Pi can capture images at roughly 5 frames per second. Increasing that resolution decreases the frames per second and also decreases the speed that it can detect the ball. Howevever, increasing the resolution also increases the size of the ball that can be detected. A greater resolution means that the Raspberry Pi algorithm can detect balls that are either smaller or further away. At the resolution we chose (360x240) the pi can reliably detect a ball that is 2 or 3 feet away.

Once the image is captured, we need to filter out for the color yellow. This is done quite simply in the HSV (hue/saturation/value) colorspace. In good lighting, the color yellow falls in the Hue values of ~30-60, the Saturation values of ~80-255, and the Value values of ~80-255. More precise values for yellow detection can be used for more accurate results, but they depend heavily on lighting conditions on the room. For this reason, the program needs to be re-calibrated every time it enters new lighting condition. In the future we could have an auto-calibration sequence for the robot to determine these values, or simply preset modes for different lighting methods.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Hough transform object detection. OpenStax CNX. Dec 16, 2015 Download for free at http://legacy.cnx.org/content/col11937/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Hough transform object detection' conversation and receive update notifications?

Ask