<< Chapter < Page | Chapter >> Page > |
It turns out that other measurements and calculations reveal that, when present, hydrogen bonding attractions are approximately ten times stronger than dipole-dipole attractions or dispersion forces, for comparably sized molecules. Thus, hydrogen bonding dominates intermolecular attractions for those molecules which are capable of hydrogen bonding.
Of course, these conclusions are based on the set of data in Table 1 and Figure 5. These sixteen molecules are all somewhat comparable, consisting of no more than 5 atoms, and no more than one atom other than hydrogen. The boiling points of other molecules can reveal other trends in the strengths of intermolecular attractions. We will take one example to illustrate this. Let’s compare the normal boiling point of H 2 O, 100 ºC, to that of octane (C 8 H 18 ), which is 125 ºC. Octane is symmetric, has no dipole moment, and has no N, O, or F atoms that could hydrogen bond. Therefore, octane molecules attract each other entirely through dispersion forces. And yet, the strength of the attractions between octane molecules is greater than that between water molecules. This reveals that the magnitude of the dispersion force can be dominant in comparing molecules of very different sizes. Dispersion forces can dominate both dipole-dipole interactions in polar molecules, and even hydrogen bonding forces.
Therefore, in attempting to predict which of two molecules might have the stronger intermolecular forces, it is important first to consider first whether the molecules are of comparable sizes or of very different sizes. Provided that the molecules are of comparable size, the dispersion forces should not be too very different. In this case, polar molecules will have stronger intermolecular forces than non-polar molecules, and molecules which exhibit hydrogen bonding will have even stronger intermolecular forces.
Notification Switch
Would you like to follow the 'Concept development studies in chemistry 2013' conversation and receive update notifications?