<< Chapter < Page Chapter >> Page >

Watch “The Pale Pitcher Plant” episode of the video series Plants Are Cool, Too, a Botanical Society of America video about a carnivorous plant species found in Louisiana.

Evolution connection

Plant adaptations in resource-deficient environments

Roots, stems, and leaves are structured to ensure that a plant can obtain the required sunlight, water, soil nutrients, and oxygen resources. Some remarkable adaptations have evolved to enable plant species to thrive in less than ideal habitats, where one or more of these resources is in short supply.

In tropical rainforests, light is often scarce, since many trees and plants grow close together and block much of the sunlight from reaching the forest floor. Many tropical plant species have exceptionally broad leaves to maximize the capture of sunlight. Other species are epiphytes: plants that grow on other plants that serve as a physical support. Such plants are able to grow high up in the canopy atop the branches of other trees, where sunlight is more plentiful. Epiphytes live on rain and minerals collected in the branches and leaves of the supporting plant. Bromeliads (members of the pineapple family), ferns, and orchids are examples of tropical epiphytes ( [link] ). Many epiphytes have specialized tissues that enable them to efficiently capture and store water.

Photo shows long, thin brown leaves of Spanish moss hanging down from the branches of a large oak tree.
One of the most well known bromeliads is Spanish moss ( Tillandsia usneoides ), seen here in an oak tree. (credit: Kristine Paulus)

Some plants have special adaptations that help them to survive in nutrient-poor environments. Carnivorous plants, such as the Venus flytrap and the pitcher plant ( [link] ), grow in bogs where the soil is low in nitrogen. In these plants, leaves are modified to capture insects. The insect-capturing leaves may have evolved to provide these plants with a supplementary source of much-needed nitrogen.

 Left photo shows modified leaves of a Venus flytrap. The two leaves resemble the upper and lower part of the mouth, and are red on the interior. Hair-like appendages, like teeth, frame each modified leaf, so that when the leaves close, the insect will be trapped. Right photo shows three modified leaves of the pitcher plant, which are green tubes with red specks and have a red rim forming the top opening.
The (a) Venus flytrap has modified leaves that can capture insects. When an unlucky insect touches the trigger hairs inside the leaf, the trap suddenly closes. The opening of the (b) pitcher plant is lined with a slippery wax. Insects crawling on the lip slip and fall into a pool of water in the bottom of the pitcher, where they are digested by bacteria. The plant then absorbs the smaller molecules. (credit a: modification of work by Peter Shanks; credit b: modification of work by Tim Mansfield)

Many swamp plants have adaptations that enable them to thrive in wet areas, where their roots grow submerged underwater. In these aquatic areas, the soil is unstable and little oxygen is available to reach the roots. Trees such as mangroves ( Rhizophora sp.) growing in coastal waters produce aboveground roots that help support the tree ( [link] ). Some species of mangroves, as well as cypress trees, have pneumatophores: upward-growing roots containing pores and pockets of tissue specialized for gas exchange. Wild rice is an aquatic plant with large air spaces in the root cortex. The air-filled tissue—called aerenchyma—provides a path for oxygen to diffuse down to the root tips, which are embedded in oxygen-poor bottom sediments.

 Photo A shows mangrove trees with roots extending into the water. Part B shows cypress trees growing in the water, with upward-growing roots between the trees. Part C is a scanning electron micrograph showing a cross section of wild rice. The cells radiate from the center like spokes on a bicycle wheel, and are interspersed by large spaces that hold air.
The branches of (a) mangrove trees develop aerial roots, which descend to the ground and help to anchor the trees. (b) Cypress trees and some mangrove species have upward-growing roots called pneumatophores that are involved in gas exchange. Aquatic plants such as (c) wild rice have large spaces in the root cortex called aerenchyma, visualized here using scanning electron microscopy. (credit a: modification of work by Roberto Verzo; credit b: modification of work by Duane Burdick; credit c: modification of work by Robert R. Wise)

Watch Venus Flytraps: Jaws of Death , an extraordinary BBC close-up of the Venus flytrap in action.

Section summary

Leaves are the main site of photosynthesis. A typical leaf consists of a lamina (the broad part of the leaf, also called the blade) and a petiole (the stalk that attaches the leaf to a stem). The arrangement of leaves on a stem, known as phyllotaxy, enables maximum exposure to sunlight. Each plant species has a characteristic leaf arrangement and form. The pattern of leaf arrangement may be alternate, opposite, or spiral, while leaf form may be simple or compound. Leaf tissue consists of the epidermis, which forms the outermost cell layer, and mesophyll and vascular tissue, which make up the inner portion of the leaf. In some plant species, leaf form is modified to form structures such as tendrils, spines, bud scales, and needles.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Bio 351 university of texas. OpenStax CNX. Dec 31, 2015 Download for free at https://legacy.cnx.org/content/col11943/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Bio 351 university of texas' conversation and receive update notifications?

Ask