<< Chapter < Page Chapter >> Page >

A look back at and shows that the equilibrium pressure of the product of the reaction increases with increasingthe initial quantity of reaction. This seems quite intuitive. Less intuitive is the variation of the equilibrium pressure of theproduct of this reaction with variation in the volume of the container, as shown in . Note that the pressure of N H 3 decreases by more than a factor of ten when the volume is increased by a factor of ten. This means that, at equilibrium, there arefewer moles of N H 3 produced when the reaction occurs in a larger volume.

To understand this effect, we rewrite the equilibrium constant in to explicit show the volume of the container. This is done by applying Dalton's Law of Partial Pressures , so that each partial pressure is given by the Ideal Gas Law:

K p n N H 3 2 R T V 2 n N 2 R T V n H 2 3 R T V 3 n N H 3 2 n N 2 n H 2 3 R T V 2

Therefore,

K p R T V 2 n N H 3 2 n N 2 n H 2 3

This form of the equation makes it clear that, when the volume increases, the left side of the equation decreases.This means that the right side of the equation must decrease also, and in turn, n N H 3 must decrease while n N 2 and n H 2 must increase. The equilibrium is thus shifted from products toreactants when the volume increases for this reaction .

The effect of changing the volume must be considered for each specific reaction, because the effect dependson the stoichiometry of the reaction. One way to determine the consequence of a change in volume is to rewrite the equilibriumconstant as we have done in .

Finally, we consider changes in temperature. We note that K p increases with T for endothermic reactions and decreases with T for exothermic reactions. As such, the products are increasinglyfavored with increasing temperature when the reaction is endothermic, and the reactants are increasingly favored withincreasing temperature when the reaction is exothermic. On reflection, we note that when the reaction is exothermic, thereverse reaction is endothermic. Putting these statements together, we can say that the reaction equilibrium always shifts in thedirection of the endothermic reaction when the temperature is increased.

All of these observations can be collected into a single unifying concept known as Le Châtelier's Principle .

Le châtelier's principle

When a reaction at equilibrium is stressed by a change in conditions, the equilibrium will be reestablished insuch a way as to counter the stress.

This statement is best understood by reflection on the types of "stresses" we haveconsidered in this section. When a reactant is added to a system at equilibrium, the reaction responds by consuming some of that addedreactant as it establishes a new equilibrium. This offsets some of the stress of the increase in reactant. When the temperature israised for a reaction at equilibrium, this adds thermal energy. The system shifts the equilibrium in the endothermic direction, thusabsorbing some of the added thermal energy, countering the stress.

The most challenging of the three types of stress considered in this section is the change in volume. Byincreasing the volume containing a gas phase reaction at equilibrium, we reduce the partial pressures of all gases present and thus reduce the total pressure. Recall that the response of this reaction to the volume increase was to create more of the reactants at theexpense of the products. One consequence of this shift is that more gas molecules are created, and this increases the total pressure inthe reaction flask. Thus, the reaction responds to the stress of the volume increase by partially offsetting the pressure decreasewith an increase in the number of moles of gas at equilibrium.

Le Châtelier's principle is a useful mnemonic for predicting how we might increase or decreasethe amount of product at equilibrium by changing the conditions of the reaction. From this principle, we can predict whether thereaction should occur at high temperature or low temperature, and whether it should occur at high pressure or low pressure.

Review and discussion questions

In the data given for equilibrium of this reaction , there is no volume given. Show that changing the volume for the reactiondoes not change the number of moles of reactants and products present at equilibrium, i.e. changing the volume does not shift the equilibrium.

Got questions? Get instant answers now!

For this reaction the number of moles of N O 2 at equilibrium increases if we increase the volume in which the reaction is contained. Explain why this must be true in terms ofdynamic equilibrium, give a reason why the rates of the forward and reverse reactions might be affected differently by changes in thevolume.

Got questions? Get instant answers now!

We could balance by writing

2 N 2 ( g ) + 6 H 2 ( g ) 4 N H 3 ( g )

Write the form of the equilibrium constant for the reaction balanced as in . What is the value of the equilibrium constant? (Refer to .) Of course, the pressures at equilibrium do not depend on whether the reaction is balanced as in or as in . Explain why this is true, even though the equilibrium constant can be written differently and havea different value.

Got questions? Get instant answers now!

Show that the equilibrium constant K p in for this reaction can be written in terms of the concentrations or particle densities, e.g. [ N 2 ] n N 2 V , instead of the partial pressures. In this form, we call theequilibrium constant K c . Find the relationship between K p and K c , and calculate the value of K c .

Got questions? Get instant answers now!

For each of these reactions, predict whether increases in temperature will shift the reaction equilibrium moretowards products or more towards reactants.

2 C O ( g ) + O 2 ( g ) 2 C O 2 ( g )

O 3 ( g ) + N O ( g ) N O 2 ( g ) + O 2 ( g )

2 O 3 ( g ) 3 O 2 ( g )

Got questions? Get instant answers now!

Plot the data in on a graph showing K p on the y-axis and T on the x-axis. The shape of this graph is reminiscent of the graph ofanother physical property as a function of increasing temperature. Identify that property, and suggest a reason why the shapes of thegraphs might be similar.

Got questions? Get instant answers now!

Using Le Châtelier's principle, predict whether the specified "stress" will produce anincrease or a decrease in the amount of product observed at equilibrium for the reaction:

2 H 2 ( g ) + C O ( g ) C H 3 O H ( g )

Δ H ° -91 kJ mol

Volume of container is increased.

Helium is added to container.

Temperature of container is raised.

Hydrogen is added to container.

C H 3 O H is extracted from container as it is formed.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry. OpenStax CNX. Dec 06, 2007 Download for free at http://cnx.org/content/col10264/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry' conversation and receive update notifications?

Ask