<< Chapter < Page Chapter >> Page >

Introduction

In the previous study, we developed detailed means to observe and measure the energy changes in chemical reactions. This ability is valuable all on its own, since managing the flow of energy from one form to another is a vital economic activity. But our work is not half done. In Chemistry, we seek not just to observe and measure, but also to model and to understand conceptually. We can make this point clearly by thinking about the following. Some chemical reactions produce energy, even in spectacular amounts. The detonation of a single gram of trinitrotoluene (TNT) produces about 4.2 kJ of energy. The reaction of a single gram of sodium metal (Na) with water produces about 8 kJ of energy. On the other hand, some reactions absorb energy, often evidenced by a significant cooling of the products or the surroundings of the reaction. For example, the hydration of ten grams of ammonium nitrate (NH 4 NO 3 ) in an instant cold pack absorbs about 3.2 kJ of energy, causing it to be cold enough to treat minor athletic injuries.

How can we account for these great variations in the energies of reactions? Where does the energy come from in an exothermic reaction, and where does it in an endothermic reaction? Could we find a way to predict whether a reaction will be exothermic or endothermic? Answering these questions requires us to develop a model for energy transfer during chemical reactions.

Foundation

We will build significantly on the results of the previous concept study. We know how to measure energy changes in reactions. A reaction which releases energy into the environment is called an exothermic reaction, and the heat transfer q<0. A reaction which absorbs energy from the environment is called an endothermic reaction, and the heat transfer q>0.

Hess’ Law, developed in the previous concept study, is an extremely important observation. Recall that Hess’ Law tells us that the energy of a reaction is equal to the sum of the energies of a set of reactions which add up to the overall reaction. Stated differently, the energy of a reaction does not depend on what “path” we follow in converting reactant to products, whether it be in a single reaction or a series of reactions. As long as we start with the same reactants and wind up with the same products, the energy of the reaction is the same.

Although this is not an observation or previous conclusion, we’ll add to our foundation a definition of a new quantity, called “enthalpy.” To understand the usefulness of this new quantity, let’s remember that, according to Hess’ Law, if we start with a set of reactants and carry out a series of reactions which recreate the reactants, then the total energy change summed over that series of reactions has to be exactly zero. Using the Law of Conservation of Energy, this makes sense. We would not expect to be able to change the energy of a substance or substances without changing the state of those substances. In fact, for this reason, chemists call the energy of a substance a “state function,” meaning that the energy depends only on what state the substance is in (gas, liquid, solid; temperature; pressure).

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2012. OpenStax CNX. Aug 16, 2012 Download for free at http://legacy.cnx.org/content/col11444/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2012' conversation and receive update notifications?

Ask