<< Chapter < Page | Chapter >> Page > |
There are 16 elements essential for plant growth. Plants obtain three of them primarily from air and water: carbon, hydrogen and oxygen. The other 13 elements generally come from the soil. These essential elements for plant growth can be grouped into three types: primary macronutrients (nitrogen, potassium, phosphorus), secondary macronutrients (calcium, magnesium, sulfur) and micronutrients (boron, chlorine, iron, manganese, copper, zinc, molybdenum). The available primary macronutrients in the soil are usually the limiting factor in plant growth. In undisturbed soils, these macronutrients are replenished by the natural cycles of matter. In farmed soils, they are removed from the natural cycle in such large amounts when crops are harvested that they usually must be replaced by supplementary means (e.g. fertilizer). Because micronutrients are required by plants in much lower quantities, they are often naturally maintained in the soil in sufficient quantities to make supplementation with fertilizers unnecessary.
An important factor affecting soil fertility is soil pH (the negative log of the hydrogen ion concentration). Soil pH is a measure of the acidity or alkalinity of the soil solution. On the pH scale (0 to 14) a value of seven represents a neutral solution; a value less than seven represents an acidic solution and a value greater than seven represents an alkaline solution . Soil pH affects the health of microorganisms in the soil and controls the availability of nutrients in the soil solution. Strongly acidic soils (less than 5.5) hinder the growth of bacteria that decompose organic matter in the soil. This results in a buildup of undecomposed organic matter, which leaves important nutrients such as nitrogen in forms that are unusable by plants.
Soil pH also affects the solubility of nutrient-bearing minerals. This is important because the nutrients must be dissolved in solution for plants to assimilate them through their roots. Most minerals are more soluble in slightly acidic soils than in neutral or slightly alkaline soils.
Strongly acid soils (pH four to five), though, can result in high concentrations of aluminum, iron and manganese in the soil solution, which may inhibit the growth of some plants. Other plants, however, such as blueberries, thrive in strongly acidic soil. At high pH (greater than 8.5) many micronutrients such as copper and iron become limited. Phosphorus becomes limited at both low and high pH. A soil pH range of approximately six to eight is conducive to the growth of most plants.
Soil can take hundreds or thousands of years to mature. Therefore, once fertile topsoil is lost, it is not easily replaced. Soil degradation refers to deterioration in the quality of the soil and the concomitant reduction in its capacity to produce. Soils are degraded primarily by erosion, organic matter loss, nutrient loss and salinization. Such processes often arise from poor soil management during agricultural activities. In extreme cases, soil degradation can lead to desertification (conversion of land to desert-like conditions) of croplands and rangelands in semi-arid regions.
Notification Switch
Would you like to follow the 'Ap environmental science' conversation and receive update notifications?