<< Chapter < Page Chapter >> Page >

Observation 3: distortions from expected geometries

It is interesting to note that some molecular geometries(CH 4 , CO 2 , HCCH)are exactly predicted by the Electron Domain model, whereas in other molecules, the model predictions are only approximatelycorrect. For examples, the observed angles in ammonia and water each differ slightly from the tetrahedral angle. Here again, thereare four pairs of valence shell electrons about the central atoms. As such, it is reasonable to conclude that the bond angles aredetermined by the mutual repulsion of these electron pairs, and are thus expected to be 109.5°, which is close but notexact.

One clue as to a possible reason for the discrepancy is that the bond angles in ammonia and water are both less than 109.5°. Another is that both ammonia and water molecules have lone pair electrons, whereas thereare no lone pairs in a methane molecule, for which the Electron Domain prediction is exact. Moreover, the bond angle in water, withtwo lone pairs, is less than the bond angles in ammonia, with a single lone pair. We can straightforwardly conclude from theseobservations that the lone pairs of electrons must produce a greater repulsive effect than do the bonded pairs. Thus, inammonia, the three bonded pairs of electrons are forced together slightly compared to those in methane, due to the greater repulsiveeffect of the lone pair. Likewise, in water, the two bonded pairs of electrons are even further forced together by the two lone pairsof electrons.

This model accounts for the comparative bond angles observed experimentally in these molecules. The valenceshell electron pairs repel one another, establishing the geometry in which the energy of their interaction is minimized. Lone pairelectrons apparently generate a greater repulsion, thus slightly reducing the angles between the bonded pairs of electrons. Althoughthis model accounts for the observed geometries, why should lone pair electrons generate a greater repulsive effect? We must guessat a qualitative answer to this question, since we have no description at this point for where the valence shell electronpairs actually are or what it means to share an electron pair. We can assume, however, that a pair of electrons shared by two atomsmust be located somewhere between the two nuclei, otherwise our concept of "sharing" is quite meaningless. Therefore, the powerfultendency of the two electrons in the pair to repel one another must be significantly offset by the localization of these electronsbetween the two nuclei which share them. By contrast, a lone pair of electrons need not be so localized, since there is no secondnucleus to draw them into the same vicinity. Thus more free to move about the central atom, these lone pair electrons must have a moresignificant repulsive effect on the other pairs of electrons.

These ideas can be extended by more closely examining the geometry of ethene,C 2 H 4 . Recall that each H-C-H bond angle is 116.6° and each H-C-C bond angle is 121.7°, whereas the Electron Domain theoryprediction is for bond angles exactly equal to 120°. We can understand why the H-C-H bond angle is slightly less than120° by assuming that the two pairs of electrons in the C=C double bond produce a greater repulsive effect than do either ofthe single pairs of electrons in the C-H single bonds. The result of this greater repulsion is a slight "pinching" of the H-C-H bondangle to less than 120°.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2013. OpenStax CNX. Oct 07, 2013 Download for free at http://legacy.cnx.org/content/col11579/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2013' conversation and receive update notifications?

Ask