<< Chapter < Page Chapter >> Page >

The properties of matter

Let us now look at what we have learned about chemical bonds, intermolecular forces and the kinetic theory of matter, and see whetherthis can help us to understand some of the macroscopic properties of materials.

  1. Melting point
    Melting point
    The temperature at which a solid changes its phase or state to become a liquid . The process is called melting and the reverse process (change in phase from liquidto solid) is called freezing .
    In order for a solid to melt, the energy of the particles must increase enough to overcome the bonds that are holding the particlestogether. It makes sense then that a solid which is held together by strong bonds will have a higher melting point than one where the bonds are weak, because more energy (heat) is needed to breakthe bonds. In the examples we have looked at metals, ionic solids and some atomic lattices (e.g. diamond) have high melting points, whereas the meltingpoints for molecular solids and other atomic lattices (e.g. graphite) are much lower. Generally, the intermolecular forces between molecular solids are weaker than those between ionic and metallic solids.
  2. Boiling point
    Boiling point
    The temperature at which a liquid changes its phase to become a gas . The process is called evaporation and the reverse process is called condensation
    When the temperature of a liquid increases, the average kinetic energy of the particles also increases and they are able to overcomethe bonding forces that are holding them in the liquid. When boiling point is reached, evaporation takes place and some particles in the liquid become a gas. In other words, the energy of theparticles is too great for them to be held in a liquid anymore. The stronger the bonds within a liquid, the higher the boiling point needs to be in order tobreak these bonds. Metallic and ionic compounds have high boiling points while the boiling point for molecular liquids is lower.The data in [link] below may help you to understand some of the concepts we have explained. Not all of the substances in the table aresolids at room temperature, so for now, let's just focus on the boiling points for each of these substances. What do you notice?
    The melting and boiling points for a number of substances
    Substance Melting point ( ° C ) Boiling point ( ° C )
    Ethanol ( C 2 H 6 O ) - 114,3 78,4
    Water 0 100
    Mercury -38,83 356,73
    Sodium chloride 801 1465
    You will have seen that substances such as ethanol, with relatively weak intermolecular forces, have the lowest boiling point, while substances withstronger intermolecular forces such as sodium chloride and mercury, must be heated much more if the particles are to have enough energy to overcome theforces that are holding them together in the liquid. See the section below for a further exercise on boiling point.
  3. Density and viscosity
    Density and viscosity is not in CAPS - Included for Completeness
    Density
    Density is a measure of the mass of a substance per unit volume.
    The density of a solid is generally higher than that of a liquid because the particles are held much more closely together and therefore thereare more particles packed together in a particular volume. In other words, there is a greater mass of the substance in a particular volume. In general, densityincreases as the strength of the intermolecular forces increases.
    Viscosity
    Viscosity is a measure of how resistant a liquid is to flowing (in other words, how easy it is to pour the liquid from one container toanother).
    Viscosity is also sometimes described as the 'thickness' of a fluid. Think for example of syrup and how slowly it pours from one container intoanother. Now compare this to how easy it is to pour water. The viscosity of syrup is greater than the viscosity of water. Once again, the stronger theintermolecular forces in the liquid, the greater its viscosity.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry grade 10 [caps]. OpenStax CNX. Jun 13, 2011 Download for free at http://cnx.org/content/col11303/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry grade 10 [caps]' conversation and receive update notifications?

Ask