<< Chapter < Page Chapter >> Page >
This module is part of a collection of modules intended for students enrolled in PreCalculus (MATH 1508) at the University of Texas at El Paso.

Significant digits

Introduction

Though easy to comprehend, significant digits play an important role in engineering calculations. In this module, the rules are presented that govern how to determine which digits present in a number are significant. In addition, several applications are used to illustrate how significant digits can be used to express the results of engineering calculations.

Basic rules

A number can be thought of as a string of digits. Significant digits represent those digits present in a number that carry significance or importance to the precision of the number.

Rule 1: All digits other than 0 are significant. For example, the number 46 has two significant digits and the number 25.8 has three significant digits.

Rule 2: Zeros appearing anywhere between two non-zero digits are significant. Let us consider the number 506.72. The 0 that occurs between the 5 and 6 is significant according to Rule 2. Thus the number 506.72 has five significant digits.

Rule 3: Leading zeros are not significant. For example, 0.00489 has threee significant digits.

Rule 4: Trailing zeros in a number containing a decimal point are significant. For example, the number 36.500 has five significant digits.

Rule 5: Zeroes at the end of a number are significant only if they are behind a decimal point. Let us consider 4,600 as the number. It is not clear whether the zeros at the end of the number are significant. As a result, there could be two, three or four significant digits present. To avoid ambiguity, one may express the number by means of scientific notation. If the number is written as 4.6 ×10 3 , then it has two significant digits. If the number is written as 4.60 ×10 3 , then it has three significant digits. Lastly, if the number is written as 4.600 ×10 3 , then it has four significant digits.

Rounding

The concept of significant digits is often used in connection with rounding. Rounding to n significant digits is a more general-purpose technique than rounding to n decimal places, since it handles numbers of different scales in a uniform way.

Let us consider the population of a town. The population of the town might be known to the nearest thousand, say 12,000. Now let us consider the population of a state. The might be known only to the nearest million and might be stated as 12,000,000. The former number might be in error by hundreds while the latter number might be in error by hundreds of thousands of individuals. Despite this, the two numbers have the same significant digits. They are 5 and 2. This reflects the fact that the significance of the error (its likely size relative to the size of the quantity being measured) is the same in both cases.

The rules for rounding a number to n significant digits are:

Start with the leftmost non-zero digit (e.g. the "7" in 7400, or the "4" in 0.0456).

  • Keep n digits. Replace the rest with zeros.
  • Round up by one if appropriate. For example, if rounding 0.89 to 1 significant digit, the result would be 0.9.
  • Or, round down by one if appropriate. For example, if rounding 0.042 to one significant digit, the result would be 0.04

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Math 1508 (laboratory) engineering applications of precalculus. OpenStax CNX. Aug 24, 2011 Download for free at http://cnx.org/content/col11337/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Math 1508 (laboratory) engineering applications of precalculus' conversation and receive update notifications?

Ask