<< Chapter < Page Chapter >> Page >
This module discusses how to represent proteins in terms of the Cartesian coordinates of their atoms and in terms of the angle values of their rotatable bonds. It then discusses Forward Kinematics, which allows the computation of Cartesian coordinates when the torsional angle values are known.

    Topics in this module

  • Modeling Proteins on a Computer
    • Cartesian Representation of Protein Conformations
    • The Internal Degrees of Freedom of a Protein
    • Dihedral Representation of Protein Conformations
  • Protein Forward Kinematics
    • Mathematical Background: Matrices and Transformations
    • Forward Kinematics
      • A simple approach
      • Denavit-Hartenberg Local Frames

Modeling proteins on a computer

In order to construct efficient, maintainable software to deal with and manipulate protein structures, a suitable way to store these structures has to be adopted. Depending on the ultimate application, different representations may have advantages and disadvantages from a software perspective. For example, when designing a simple visualization software, the Cartesian (x,y,z) coordinates of each atom are useful and simple to render on the screen. However, if the program is to manipulate bond angles and bond lengths for example, a representation based on the internal degrees of freedom (see below) may be more appropriate. Some applications may even need to store more than one representation at a time; for example a simulation program that needs to compute a protein's Potential Energy, which is a function of both Cartesian and Internal coordinates, would benefit from keeping both representations at the same time.

The structure of a protein is the set of atoms it contains, and the bonds that join them, that is, its inherent connectivity. A particular geometric shape of a protein (that is, the spatial arrangement of the atoms in the molecule) is called its conformation . Thus, a given protein structure can have many different conformations. Next, we discuss the two most common ways to model protein structures and conformations for software applications: Cartesian and Dihedral representations.

Cartesian representation of protein conformations

The most essential information for modeling a protein structure is the relative position of each atom, given as (x,y,z) Cartesian coordinates. Popular imaging methods such as X-Ray Crystallography, Nuclear Magnetic Resonance (NMR) and Cryogenic Electron Microscopy (Cryo-EM) are used to experimentally obtain relative atom positions from protein crystals and solutions. This is precisely the information provided by Protein Databank (PDB) format coordinate files:

First 19 atom coordinate records of pdb entry 2hla

The third column lists the atom type and the seventh, eighth, and ninth columns contain the x, y, and z coordinates of each atom. These Cartesian coordinates are given in relation to some reference frame determined by the experimental imaging technique, which is not important. The conformation is uniquely specified by the relative positioning of the atoms.
The coordinates and type of each atom, together with the amino acid type they belong to, are sufficient information to reconstruct the connectivity (bonding) of a protein, and therefore sufficient to render an image of the protein. If one wishes to allow the protein to move in a realistic fashion, however, more information may be necessary.

Questions & Answers

what does the ideal gas law states
Joy Reply
Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Geometric methods in structural computational biology. OpenStax CNX. Jun 11, 2007 Download for free at http://cnx.org/content/col10344/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Geometric methods in structural computational biology' conversation and receive update notifications?

Ask