<< Chapter < Page Chapter >> Page >
This module discusses how to represent proteins in terms of the Cartesian coordinates of their atoms and in terms of the angle values of their rotatable bonds. It then discusses Forward Kinematics, which allows the computation of Cartesian coordinates when the torsional angle values are known.

    Topics in this module

  • Modeling Proteins on a Computer
    • Cartesian Representation of Protein Conformations
    • The Internal Degrees of Freedom of a Protein
    • Dihedral Representation of Protein Conformations
  • Protein Forward Kinematics
    • Mathematical Background: Matrices and Transformations
    • Forward Kinematics
      • A simple approach
      • Denavit-Hartenberg Local Frames

Modeling proteins on a computer

In order to construct efficient, maintainable software to deal with and manipulate protein structures, a suitable way to store these structures has to be adopted. Depending on the ultimate application, different representations may have advantages and disadvantages from a software perspective. For example, when designing a simple visualization software, the Cartesian (x,y,z) coordinates of each atom are useful and simple to render on the screen. However, if the program is to manipulate bond angles and bond lengths for example, a representation based on the internal degrees of freedom (see below) may be more appropriate. Some applications may even need to store more than one representation at a time; for example a simulation program that needs to compute a protein's Potential Energy, which is a function of both Cartesian and Internal coordinates, would benefit from keeping both representations at the same time.

The structure of a protein is the set of atoms it contains, and the bonds that join them, that is, its inherent connectivity. A particular geometric shape of a protein (that is, the spatial arrangement of the atoms in the molecule) is called its conformation . Thus, a given protein structure can have many different conformations. Next, we discuss the two most common ways to model protein structures and conformations for software applications: Cartesian and Dihedral representations.

Cartesian representation of protein conformations

The most essential information for modeling a protein structure is the relative position of each atom, given as (x,y,z) Cartesian coordinates. Popular imaging methods such as X-Ray Crystallography, Nuclear Magnetic Resonance (NMR) and Cryogenic Electron Microscopy (Cryo-EM) are used to experimentally obtain relative atom positions from protein crystals and solutions. This is precisely the information provided by Protein Databank (PDB) format coordinate files:

First 19 atom coordinate records of pdb entry 2hla

The third column lists the atom type and the seventh, eighth, and ninth columns contain the x, y, and z coordinates of each atom. These Cartesian coordinates are given in relation to some reference frame determined by the experimental imaging technique, which is not important. The conformation is uniquely specified by the relative positioning of the atoms.
The coordinates and type of each atom, together with the amino acid type they belong to, are sufficient information to reconstruct the connectivity (bonding) of a protein, and therefore sufficient to render an image of the protein. If one wishes to allow the protein to move in a realistic fashion, however, more information may be necessary.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Geometric methods in structural computational biology. OpenStax CNX. Jun 11, 2007 Download for free at http://cnx.org/content/col10344/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Geometric methods in structural computational biology' conversation and receive update notifications?

Ask