<< Chapter < Page Chapter >> Page >
Во процесот на решавање на диференцијални равенки од прв ред, ќе се наведат постапките за решавање на: дифернцијална равенка во која променливите се раздвојуваат, хомогената диференцијална равенка, равенка која се сведува на хомогената диференцијална равенка, линерната диференцијална равенка и Бернулиевата диференцијална равенка.

Диференцијални равенки од прв ред

Диференцијалните равенки од прв ред ќе се класифицираат на типови според нивниот облик и ќе се прикажат техниките за нивно решавање. Најопшто, диференцијална равенка од прв ред е равенка од обликот

f ( x , y , y ' ) = 0 size 12{f \( x,y, { {y}} sup { ' } \) =0} {}

чие општо решение е

y = ϕ ( x ) + C . size 12{y=ϕ \( x \) +C "." } {}

Геометриски, општото решение претставува класа криви кои се добиваат од графикот на функцијата y = ϕ ( x ) size 12{y=ϕ \( x \) } {} со транслација по y size 12{y} {} -оската за реална вредност C size 12{C} {} . Секое партикуларно решение ќе биде функција (геометриски претставена со една крива) која задоволува некој почетен услов, а кај равенките од прв ред тоа значи кривата да поминува низ дадена точка ( x 0 , y 0 ) size 12{ \( x rSub { size 8{0} } ,y rSub { size 8{0} } \) } {} . Проблемот за наоѓање на партикуларно решение кое го задоволува условот

y 0 = ϕ ( x 0 ) size 12{y rSub { size 8{0} } =ϕ \( x rSub { size 8{0} } \) } {}

е базичен во теоријата на диференцијалните равенки и се нарекува Кошиев (Cauchy) проблем.

Во продлолжение ќе наведеме повеќе типови линеарни диференцијални равенки од прв ред и методи за нивно решавање.

1. диференцијална равенка во која променливите се раздвојуваат

Наједноставниот тип на диференцијална равенка од прв ред е случајот кога променливите може да се раздвојат. Тоа е равенка од обликот

A ( x ) dx + B ( y ) dy = 0 size 12{A \( x \) ital "dx"+B \( y \) ital "dy"=0} {}

во која функциијата A size 12{A} {} зависи само од променливата x size 12{x} {} , а функцијата B size 12{B} {} зависи само од променливата y size 12{y} {} . Во ваквиот облик на диференцијална равенка променливите и соодветните диференцијали може да се раздвојат и општото решение се запишува преку интеграли

A ( x ) dx + B ( y ) dy = C size 12{ Int {A \( x \) ital "dx"} + Int {B \( y \) ital "dy"} =C} {}

каде C size 12{C} {} е произволна интегрална константа.

Пример 1.

Да се најде општото решение на диференцијалната равенка

xy ( 1 + y 2 ) dx ( 1 + x 2 ) dy = 0 . size 12{ ital "xy" \( 1+y rSup { size 8{2} } \) ital "dx" - \( 1+x rSup { size 8{2} } \) ital "dy"=0 "." } {}

РЕШЕНИЕ.

Во равенката променливите се раздвојуваат

x 1 + x 2 dx 1 y ( 1 + y 2 ) dy = 0 size 12{ { {x} over {1+x rSup { size 8{2} } } } ital "dx" - { {1} over {y \( 1+y rSup { size 8{2} } \) } } ital "dy"=0} {}

и општото решение е

x 1 + x 2 dx 1 y ( 1 + y 2 ) dy = C 1 . size 12{ Int { { {x} over {1+x rSup { size 8{2} } } } ital "dx"} - Int { { {1} over {y \( 1+y rSup { size 8{2} } \) } } ital "dy"} =C rSub { size 8{1} } "." } {}

Со решавање на интегралите се добива

1 2 ln ( 1 + x 2 ) 1 2 ln y 2 1 + y 2 = C 1 , size 12{ { {1} over {2} } "ln" \( 1+x rSup { size 8{2} } \) - { {1} over {2} } "ln" { {y rSup { size 8{2} } } over {1+y rSup { size 8{2} } } } =C rSub { size 8{1} } ,} {}

односно

ln ( 1 + x 2 ) ln y 2 1 + y 2 = ln C . size 12{"ln" \( 1+x rSup { size 8{2} } \) - "ln" { {y rSup { size 8{2} } } over {1+y rSup { size 8{2} } } } ="ln"C "." } {}

Интегралната константа C 1 size 12{C rSub { size 8{1} } } {} е произволна и може да се запише во било каков облик, а и помножена со константа пак ќе биде некоја константа. Во овој пример, бидејќи изразите во решението на равенката се логаритми, таа ќе се запише преку логаритам C 1 = 1 2 ln C size 12{C rSub { size 8{1} } = { {1} over {2} } "ln"C} {} и општото решението ќе има облик

ln ( 1 + x 2 ) ( 1 + y 2 ) y 2 = ln C , size 12{"ln" { { \( 1+x rSup { size 8{2} } \) \( 1+y rSup { size 8{2} } \) } over {y rSup { size 8{2} } } } ="ln"C,} {}

и по антилогаритмирање

( 1 + x 2 ) ( 1 + y 2 ) = Cy 2 . size 12{ \( 1+x rSup { size 8{2} } \) \( 1+y rSup { size 8{2} } \) = ital "Cy" rSup { size 8{2} } "." } {}

Пример 2.

Да се најде партикуларното решение на диференцијалната равенка

y x y ' = b + bx 2 y ' size 12{y - x { {y}} sup { ' }=b+ ital "bx" rSup { size 8{2} } { {y}} sup { ' }} {} , за кое y = 1 size 12{y=1} {} кога x = 1 . size 12{x=1 "." } {}

РЕШЕНИЕ.

Диференцијалната равенка y x y ' = b + bx 2 y ' size 12{y - x { {y}} sup { ' }=b+ ital "bx" rSup { size 8{2} } { {y}} sup { ' }} {} се запишува во обликот

y b = ( x + bx 2 ) dy dx size 12{y - b= \( x+ ital "bx" rSup { size 8{2} } \) { { ital "dy"} over { ital "dx"} } } {}

во кој променливите може да се раздвојат

dx x + bx 2 = dy y b size 12{ { { ital "dx"} over {x+ ital "bx" rSup { size 8{2} } } } = { { ital "dy"} over {y - b} } } {}

и по решавање на интегралите се добива

ln x ln x + 1 b = ln y b + ln C size 12{"ln" \lline x \lline - "ln" lline x+ { {1} over {b} } rline ="ln" \lline y - b \lline +"ln"C} {}

а по антилогаритмирање, општото решение е

y = bx C ( xb + 1 ) + b . size 12{y= { { ital "bx"} over {C \( ital "xb"+1 \) } } +b "." } {}

Бидејќи во оваа задача се бара да се определи партикуларно решение кое има вредност y = 1 size 12{y=1} {} кога x = 1, size 12{x=1,} {} овие почетни услови се заменуваат во општото решение 1 = b C ( b + 1 ) + b size 12{1= { {b} over {C \( b+1 \) } } +b} {} од каде се пресметува вредноста на константата C = b 1 b 2 . size 12{C= { {b} over {1 - b rSup { size 8{2} } } } "." } {} Заменувајќи ја оваа вредност во општото решение, се добива бараното партикуларно решение кое гласи

y = x + b xb + 1 size 12{y= { {x+b} over { ital "xb"+1} } } {} . ◄

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Диференцијални равенки. OpenStax CNX. Jun 04, 2012 Download for free at http://cnx.org/content/col11414/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Диференцијални равенки' conversation and receive update notifications?

Ask