<< Chapter < Page | Chapter >> Page > |
Bảng 2.3: Giải bằng phương pháp Runge-Kutta |
Thời Sức Dòng en+ en+1 k1 k2 gian điện điện k1 -------- in + --- k2 in + --- k3 en+1 in + k3 k4 intn động in 2 2 2 en | 0,000 0,000 0,00000 0,00000 0,0625 0,00000 0,00156 0,00078 0,00154 0,125 0,00154 0,00309 0,001550,025 0,125 0,00155 0,00309 0,1875 0,00310 0,00461 0,00386 0,00459 0,250 0,00614 0,00610 0,004600,050 0,250 0,00615 0,00610 0,3125 0,00920 0,00758 0,00994 0,00756 0,375 0,01371 0,00903 0,007570,075 0,375 0,01372 0,00903 0,4375 0,01824 0,01048 0,01896 0,01046 0,500 0,02418 0,01189 0,010470,100 0,500 0,02419 0,01189 0,5625 0,03014 0,01331 0,03084 0,01329 0,625 0,03748 0,01468 0,013300,125 0,625 0,03749 0,01468 0,6875 0,04483 0,01606 0,04552 0,01604 0,750 0,05353 0,01740 0,01605 FIXME: A LIST CAN NOT BE A TABLE ENTRY.0,750 0,05354 0,01740 0,8125 0,06224 0,01874 0,06291 0,01872 0,875 0,07226 0,02004 0,018730,175 0,875 0,07227 0,02004 0,9375 0,08229 0,02134 0,08294 0,02132 1,000 0,09359 0,02260 0,021330,200 1,000 0,09360 0,02260 1,0000 0,10490 0,02229 0,10475 0,02230 1,000 0,11590 0,02199 0,022300,225 1,000 0,11590 0,02199 1,0000 0,12690 0,02167 0,12674 0,02168 1,000 0,13758 0,02137 0,021680,250 1,000 0,13758 0,02137 1,0000 0,14827 0,02105 0,14811 0,02105 1,000 0,15863 0,02073 0,021050,275 1,000 0,15863 0,02073 1,0000 0,16900 0,02041 0,16884 0,02042 1,000 0,17905 0,02009 0,02041 |
n | 0123456789101112 |
Bảng 2.4: Bài giải bằng phương pháp của Milne.
N | Thời gian Sức điện Dòng điện Dòng điệntn động en (dự đoán) in i’n (sửa đổi) in |
456789101112 | 0,100 0,500 0,02418 0,47578 0,024190,125 0,625 0,03748 0,58736 0,037480,150 0,750 0,05353 0,69601 0,053530,175 0,875 0,07226 0,80161 0,072260,200 1,000 0,09359 0,90395 0,093580,225 1,000 0,11742 0,87772 0,116390,87888 0,11640+0,250 1,000 0,13543 0,85712 0,137550,85464 0,13753+0,275 1,000 0,16021 0,82745 0,159110,82881 0,15912+0,300 1,000 0,17894 0,80387 0,178980,80382 0,17898+ |
+ : giá trị sửa đổi thứ hai thu được bởi vòng lặp
d. Phương trình dùng phương pháp Picard hàm tương đương khởi đầu cho i, cận i0 = 0 là:
Thay thế e(t) = 5t và giá trị ban đầu i0 = 0
Thay i(1) cho i trong phương trình tích phân, thu được:
Quá trình tiếp tục, ta được:
Giới hạn chuổi sau số hạn bậc bốn là:
Nếu hàm dùng xấp xỉ i chính xác bốn số thập phân với số hạn xấp xỉ đầu tiên không chú ý đến sai số lớn thì .
5log t log0,00120
log t 9,415836 - 10
t 0,2605
Giá trị giới hạn là hàm xấp xỉ hợp lý. Vì vậy, trong ví dụ này hàm có thể dùng chỉ để thu được y cho trong khoảng 0 t 0,2; Bởi vì cho t>0,2 thì e(t) = 1. Cho nên, hàm xấp xỉ khác phải chính xác cho trong khoảng 0,2 t 0,3 như sau:
Notification Switch
Would you like to follow the 'Giáo trình giải tích mạng điện' conversation and receive update notifications?