y = g(x,c)yxx0x1hy0
Hình 2.3 : Đồ thị của lời giải xấp xỉ cho phương trình vi phân bằng phương pháp biến đổi Euler.0y1y2dy (0)dx 1
Phương pháp Euler có thể ứng dụng để giải hệ phương trình vi phân cùng lúc. Cho hai phương trình:
Với giá trị ban đầu x0, y0 và z0 giá trị mới y1 sẽ là:
Với:
Tương tự.
Với:
Cho số gia tiếp theo, giá trị x1 = x0 + h, y1 và z1 dùng để xác định y2 và z2. Trong phương pháp biến đổi Euler y1 và z1 dùng để xác định giá trị đạo hàm tại x1 cho đánh giá gần đúng cấp hai y1(1) và z1(1).
2.2.3. phương pháp picard với sự xấp xỉ liên tục.
Cơ sở của phương pháp Picard là giải chính xác, bởi sự thay thế giá trị y như hàm của x trong phạm vi giá trị x đã cho.
y g(x)
Đây là biểu thức ước lượng bởi sự thay thế trực tiếp giá trị của x để thu được giá trị tương ứng của y. Cho phương trình vi phân (2.1).
dy = f(x,y)dx
Và tích phân giữa khoảng giới hạn cho x và y.
Thì
Hay
(2.3)
Số hạng tích phân trình bày sự thay đổi trong kết quả của y với sự thay đổi của x từ x0 đến x1. Lời giải có thể thu được bởi sự đánh giá tích phân bằng phương pháp xấp xỉ liên tục.
Ta có thể xem giá trị của y như hàm của x có thể đã thu được bởi sự thay thế y dưới dạng tích phân với y0, cho giá trị ban đầu như sau:
Thực hiện biểu thức tích phân với giá trị mới của y bây giờ được thay thế vào phương trình (2.3) thu được lần xấp xỉ thứ hai cho y như sau:
Quá trình này có thể lặp lại trong thời gian cần thiết để thu được độ chính xác mong muốn..
Thật vậy, ước lượng tích phân luôn luôn phức tạp thế nhưng phải giả thiết cho biến cố định. Khó khăn và cần thực hiện nhiều lần tích phân, nên đây là mặt hạn chế sự áp dụng của phương pháp này.
Phương pháp Picard có thể áp dụng để giải đồng thời nhiều phương trình như sau:
Theo công thức, ta có:
2.2.4. phương pháp runge- kutta.
Trong phương pháp runge- kutta sự thay đổi giá trị của biến phụ thuộc là tính toán từ các công thức đã cho, biểu diễn trong điều kiện ước lượng đạo hàm tại những điểm định trước. từ mỗi giá trị duy nhất chính xác của y cho bởi công thức, phương pháp này không đòi hỏi thay thế lặp lại như phương pháp biến đổi euler hay tích phân liên tiếp như phương pháp của picard.
Công thức rút gọn gần đúng xuất phát bởi sự thay thế khai triển chuổi Taylor. Runge- Kutta xấp xỉ bậc hai có thể viết trong công thức.
y1 = y0 + a1k1 + a2k2 (2.4)
Vớik1 = f(x0,y0)h
k2 = f(x0 + b1h, y0 + b2k1)h
Các hệ số a1, a2, b1 và b2 là chính xác. Đầu tiên khai triển f(x0+ b1h, y0+ b2k1) trong chuổi Taylor tại (x0,y0), ta được:
Thay thế hai điều kiện k1 và k2 vào trong phương trình (2.4), thu được:
(2.5)
Khai triển chuổi Taylor của y tại giá trị (x0,y0) là: