<< Chapter < Page Chapter >> Page >

From a grander viewpoint, these expressions represent an achievable lower bound on performance (as assessed by the probability oferror). Furthermore, this probability will be non-zero if the conditional densities overlap over some range of values of r , such as occurred in the previous example. Within regions of overlap, the observed values are ambiguous: eithermodel is consistent with the observations. Our "optimum" decision rule operates in such regions by selecting that modelwhich is most likely (has the highest probability) of generating the measured data.

Neyman-pearson criterion

Situations occur frequently where assigning or measuring the a priori probabilities π i is unreasonable. For example, just what is the a priori probability of a supernova occurring in any particular region of the sky? We clearlyneed a model evaluation procedure that can function without a priori probabilities. This kind of test results when the so-called Neyman-Pearson criterion is used to derive the decision rule.

Using nomenclature from radar, where model 1 represents the presence of a target and 0 its absence, the various types of correct and incorrect decisions have the following names.

In statistics, a false-alarm is known as a type I error and a miss a type II error .
  • Detection probability

    we say it's there when it is; P D 1 true say 1
  • False-alarm probability

    we say it's there when it's not; P F 0 true say 1
  • Miss probability

    we say it's not there when it is; P M 1 true say 0
The remaining probability 0 true say 0 has historically been left nameless and equals 1 P F . We should also note that the detection and miss probabilities are related by P M 1 P D . As these are conditional probabilities, they do not depend on the a priori probabilities. Furthermore, the two probabilities P F and P D characterize the errors when any decision rule is used.

These two probabilities are related to each other in an interesting way. Expressing these quantities in terms of thedecision regions and the likelihood functions, we have P F r Z 1 p R 0 r P D r Z 1 p R 1 r As the region Z 1 shrinks, both of these probabilities tend toward zero; as Z 1 expands to engulf the entire range of observation values, they both tend toward unity. This rather directrelationship between P D and P F does not mean that they equal each other; in most cases, as Z 1 expands, P D increases more rapidly than P F (we had better be right more often than we are wrong!). However, the "ultimate" situation where a rule isalways right and never wrong ( P D 1 , P F 0 ) cannot occur when the conditional distributions overlap. Thus, to increase the detection probability we mustalso allow the false-alarm probability to increase. This behavior represents the fundamental tradeoff in detection theory .

One can attempt to impose a performance criterion that depends only on these probabilities with the consequent decision rulenot depending on the a priori probabilities. The Neyman-Pearson criterion assumes that the false-alarm probability is constrained to be less than orequal to a specified value α while we maximize the detection probability P D . P F P F α Z 1 P D A subtlety of the solution we are about to obtain is that the underlying probability distribution functions may not becontinuous, with the consequence that P F can never equal the constraining value α . Furthermore, a (unlikely) possibility is that the optimum value for the false-alarm probability is somewhat lessthan the criterion value. Assume, therefore, that we rephrase the optimization problem by requiring that the false-alarmprobability equal a value α that is the largest possible value less than or equal to α .

Questions & Answers

what are components of cells
ofosola Reply
twugzfisfjxxkvdsifgfuy7 it
Sami
58214993
Sami
what is a salt
John
the difference between male and female reproduction
John
what is computed
IBRAHIM Reply
what is biology
IBRAHIM
what is the full meaning of biology
IBRAHIM
what is biology
Jeneba
what is cell
Kuot
425844168
Sami
what is cytoplasm
Emmanuel Reply
structure of an animal cell
Arrey Reply
what happens when the eustachian tube is blocked
Puseletso Reply
what's atoms
Achol Reply
discuss how the following factors such as predation risk, competition and habitat structure influence animal's foraging behavior in essay form
Burnet Reply
cell?
Kuot
location of cervical vertebra
KENNEDY Reply
What are acid
Sheriff Reply
define biology infour way
Happiness Reply
What are types of cell
Nansoh Reply
how can I get this book
Gatyin Reply
what is lump
Chineye Reply
what is cell
Maluak Reply
what is biology
Maluak
what is vertibrate
Jeneba
what's cornea?
Majak Reply
what are cell
Achol
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elements of detection theory. OpenStax CNX. Jun 22, 2008 Download for free at http://cnx.org/content/col10531/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elements of detection theory' conversation and receive update notifications?

Ask