<< Chapter < Page Chapter >> Page >
  • Describe uniform circular motion.
  • Explain non-uniform circular motion.
  • Calculate angular acceleration of an object.
  • Observe the link between linear and angular acceleration.

Uniform Circular Motion and Gravitation discussed only uniform circular motion, which is motion in a circle at constant speed and, hence, constant angular velocity. Recall that angular velocity ω size 12{ω} {} was defined as the time rate of change of angle θ size 12{θ} {} :

ω = Δ θ Δ t , size 12{ω= { {Δθ} over {Δt} } ","} {}

where θ size 12{θ} {} is the angle of rotation as seen in [link] . The relationship between angular velocity ω size 12{ω} {} and linear velocity v size 12{v} {} was also defined in Rotation Angle and Angular Velocity as

v = size 12{v=rω} {}

or

ω = v r , size 12{ω= { {v} over {r} } } {}

where r size 12{r} {} is the radius of curvature, also seen in [link] . According to the sign convention, the counter clockwise direction is considered as positive direction and clockwise direction as negative

The given figure shows counterclockwise circular motion with a horizontal line, depicting radius r, drawn from the center of the circle to the right side on its circumference and another line is drawn in such a manner that it makes an acute angle delta theta with the horizontal line. Tangential velocity vectors are indicated at the end of the two lines. At the bottom right side of the figure, the formula for angular velocity is given as v upon r.
This figure shows uniform circular motion and some of its defined quantities.

Angular velocity is not constant when a skater pulls in her arms, when a child starts up a merry-go-round from rest, or when a computer’s hard disk slows to a halt when switched off. In all these cases, there is an angular acceleration    , in which ω size 12{ω} {} changes. The faster the change occurs, the greater the angular acceleration. Angular acceleration α size 12{α} {} is defined as the rate of change of angular velocity. In equation form, angular acceleration is expressed as follows:

α = Δ ω Δ t , size 12{α= { {Δω} over {Δt} } ","} {}

where Δ ω size 12{Δω} {} is the change in angular velocity    and Δ t size 12{Δt} {} is the change in time. The units of angular acceleration are rad/s /s size 12{ left ("rad/s" right )"/s"} {} , or rad/s 2 size 12{"rad/s" rSup { size 8{2} } } {} . If ω size 12{ω} {} increases, then α size 12{α} {} is positive. If ω size 12{ω} {} decreases, then α size 12{α} {} is negative.

Calculating the angular acceleration and deceleration of a bike wheel

Suppose a teenager puts her bicycle on its back and starts the rear wheel spinning from rest to a final angular velocity of 250 rpm in 5.00 s. (a) Calculate the angular acceleration in rad/s 2 size 12{"rad/s" rSup { size 8{2} } } {} . (b) If she now slams on the brakes, causing an angular acceleration of 87.3 rad/s 2 size 12{"-87" "." 3`"rad/s" rSup { size 8{2} } } {} , how long does it take the wheel to stop?

Strategy for (a)

The angular acceleration can be found directly from its definition in α = Δ ω Δ t size 12{α= { {Δω} over {Δt} } } {} because the final angular velocity and time are given. We see that Δ ω size 12{Δω} {} is 250 rpm and Δ t size 12{Δt} {} is 5.00 s.

Solution for (a)

Entering known information into the definition of angular acceleration, we get

α = Δ ω Δ t = 250 rpm 5.00 s . alignl { stack { size 12{α= { {Δω} over {Δt} } } {} #size 12{ {}= { {"250"" rpm"} over {5 "." "00 s"} } "."} {} } } {}

Because Δ ω size 12{Δω} {} is in revolutions per minute (rpm) and we want the standard units of rad/s 2 size 12{"rad/s" rSup { size 8{2} } } {} for angular acceleration, we need to convert Δ ω size 12{Δω} {} from rpm to rad/s:

Δ ω = 250 rev min 2π rad rev 1 min 60 sec = 26.2 rad s . alignl { stack { size 12{Δω="250" { {"rev"} over {"min"} } cdot { {2π" rad"} over {"60" "." "0 s"} } } {} #size 12{ {}="26" "." 2 { {"rad"} over {"s"} } } {} } } {}

Entering this quantity into the expression for α size 12{α} {} , we get

α = Δ ω Δ t = 26.2 rad/s 5.00 s = 5.24  rad/s 2 . alignl { stack { size 12{α= { {Δω} over {Δt} } } {} #size 12{ {}= { {"26" "." 2" rad/s"} over {5 "." "00"" s"} } "." } {} # size 12{ {}=5 "." "24"" rad/s" rSup { size 8{2} } } {}} } {}

Strategy for (b)

In this part, we know the angular acceleration and the initial angular velocity. We can find the stoppage time by using the definition of angular acceleration and solving for Δ t size 12{Δt} {} , yielding

Δ t = Δ ω α . size 12{Δt= { {Δω} over {α} } "."} {}

Solution for (b)

Here the angular velocity decreases from 26.2 rad/s size 12{"26" "." 2`"rad/s"} {} (250 rpm) to zero, so that Δ ω size 12{Δω} {} is 26.2 rad/s , and α size 12{α} {} is given to be 87.3 rad/s 2 size 12{"-87" "." 3`"rad/s" rSup { size 8{2} } } {} . Thus,

Δ t = 26.2 rad/s 87.3 rad/s 2 = 0.300 s. alignl { stack { size 12{Δt= { { - "26" "." 2`"rad/s"} over { - "87" "." 3`"rad/s" rSup { size 8{2} } } } } {} #=0 "." "300"`"s" "." {} } } {}

Discussion

Note that the angular acceleration as the girl spins the wheel is small and positive; it takes 5 s to produce an appreciable angular velocity. When she hits the brake, the angular acceleration is large and negative. The angular velocity quickly goes to zero. In both cases, the relationships are analogous to what happens with linear motion. For example, there is a large deceleration when you crash into a brick wall—the velocity change is large in a short time interval.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Unit 8 - rotational motion. OpenStax CNX. Feb 22, 2016 Download for free at https://legacy.cnx.org/content/col11970/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Unit 8 - rotational motion' conversation and receive update notifications?

Ask