<< Chapter < Page Chapter >> Page >
v = Δ s Δ t . size 12{v= { {Δs} over {Δt} } "."} {}

From Δ θ = Δ s r size 12{Δθ= { {Δs} over {r} } } {} we see that Δ s = r Δ θ size 12{Δs=rΔθ} {} . Substituting this into the expression for v size 12{v} {} gives

v = r Δ θ Δ t = . size 12{v= { {rΔθ} over {Δt} } =rω"."} {}

We write this relationship in two different ways and gain two different insights:

v =  or  ω = v r . size 12{v=rω``"or "ω= { {v} over {r} } "."} {}

The first relationship in v =  or  ω = v r size 12{v=rω``"or "ω= { {v} over {r} } } {} states that the linear velocity v size 12{v} {} is proportional to the distance from the center of rotation, thus, it is largest for a point on the rim (largest r size 12{r} {} ), as you might expect. We can also call this linear speed v size 12{v} {} of a point on the rim the tangential speed . The second relationship in v =  or  ω = v r size 12{v=rω``"or "ω= { {v} over {r} } } {} can be illustrated by considering the tire of a moving car. Note that the speed of a point on the rim of the tire is the same as the speed v size 12{v} {} of the car. See [link] . So the faster the car moves, the faster the tire spins—large v size 12{v} {} means a large ω size 12{ω} {} , because v = size 12{v=rω} {} . Similarly, a larger-radius tire rotating at the same angular velocity ( ω size 12{ω} {} ) will produce a greater linear speed ( v size 12{v} {} ) for the car.

The given figure shows the front wheel of a car. The radius of the car wheel, r, is shown as an arrow and the linear velocity, v, is shown with a green horizontal arrow pointing rightward. The angular velocity, omega, is shown with a clockwise-curved arrow over the wheel.
A car moving at a velocity v size 12{v} {} to the right has a tire rotating with an angular velocity ω size 12{ω} {} .The speed of the tread of the tire relative to the axle is v size 12{v} {} , the same as if the car were jacked up. Thus the car moves forward at linear velocity v = size 12{v=rω} {} , where r size 12{r} {} is the tire radius. A larger angular velocity for the tire means a greater velocity for the car.

How fast does a car tire spin?

Calculate the angular velocity of a 0.300 m radius car tire when the car travels at 15 . 0 m/s size 12{"15" "." 0`"m/s"} {} (about 54 km/h size 12{"54"`"km/h"} {} ). See [link] .

Strategy

Because the linear speed of the tire rim is the same as the speed of the car, we have v = 15.0 m/s . size 12{v} {} The radius of the tire is given to be r = 0.300 m . size 12{r} {} Knowing v size 12{v} {} and r size 12{r} {} , we can use the second relationship in v = ω = v r size 12{v=rω,``ω= { {v} over {r} } } {} to calculate the angular velocity.

Solution

To calculate the angular velocity, we will use the following relationship:

ω = v r . size 12{ω= { {v} over {r} } "."} {}

Substituting the knowns,

ω = 15 . 0 m/s 0 . 300 m = 50 . 0 rad/s. size 12{ω= { {"15" "." 0" m/s"} over {0 "." "300"" m"} } ="50" "." 0" rad/s."} {}

Discussion

When we cancel units in the above calculation, we get 50.0/s. But the angular velocity must have units of rad/s. Because radians are actually unitless (radians are defined as a ratio of distance), we can simply insert them into the answer for the angular velocity. Also note that if an earth mover with much larger tires, say 1.20 m in radius, were moving at the same speed of 15.0 m/s, its tires would rotate more slowly. They would have an angular velocity

ω = ( 15 . 0 m/s ) / ( 1 . 20 m ) = 12 . 5 rad/s. size 12{ω= \( "15" "." 0`"m/s" \) / \( 1 "." "20"`m \) ="12" "." 5`"rad/s."} {}

Both ω size 12{ω} {} and v size 12{v} {} have directions (hence they are angular and linear velocities , respectively). Angular velocity has only two directions with respect to the axis of rotation—it is either clockwise or counterclockwise. Linear velocity is tangent to the path, as illustrated in [link] .

The given figure shows the top view of an old fashioned vinyl record. Two perpendicular line segments are drawn through the center of the circular record, one vertically upward and one horizontal to the right side. Two flies are shown at the end points of the vertical lines near the borders of the record. Two arrows are also drawn perpendicularly rightward through the end points of these vertical lines depicting linear velocities. A curved arrow is also drawn at the center circular part of the record which shows the angular velocity.
As an object moves in a circle, here a fly on the edge of an old-fashioned vinyl record, its instantaneous velocity is always tangent to the circle. The direction of the angular velocity is clockwise in this case.

Section summary

  • Uniform circular motion is motion in a circle at constant speed. The rotation angle Δ θ size 12{Δθ} {} is defined as the ratio of the arc length to the radius of curvature:
    Δ θ = Δ s r , size 12{Δθ= { {Δs} over {r} } ","} {}

    where arc length Δ s size 12{Δs} {} is distance traveled along a circular path and r size 12{r} {} is the radius of curvature of the circular path. The quantity Δ θ size 12{Δθ} {} is measured in units of radians (rad), for which

    rad = 360º 1  revolution. size 12{2π`"rad"=`"360""°="`1`"revolution."} {}
  • The conversion between radians and degrees is 1 rad = 57 . 3 º size 12{1"rad"="57" "." 3°} {} .
  • Angular velocity ω size 12{ω} {} is the rate of change of an angle,
    ω = Δ θ Δ t , size 12{ω= { {Δθ} over {Δt} } ","} {}

    where a rotation Δ θ size 12{Δθ} {} takes place in a time Δ t size 12{Δt} {} . The units of angular velocity are radians per second (rad/s). Linear velocity v size 12{v} {} and angular velocity ω size 12{ω} {} are related by

    v =  or  ω = v r . size 12{v=rω``"or "ω= { {v} over {r} } "."} {}

Conceptual questions

There is an analogy between rotational and linear physical quantities. What rotational quantities are analogous to distance and velocity?

Problem exercises

Semi-trailer trucks have an odometer on one hub of a trailer wheel. The hub is weighted so that it does not rotate, but it contains gears to count the number of wheel revolutions—it then calculates the distance traveled. If the wheel has a 1.15 m diameter and goes through 200,000 rotations, how many kilometers should the odometer read?

723 km

(a) What is the period of rotation of Earth in seconds? (b) What is the angular velocity of Earth? (c) Given that Earth has a radius of 6 . 4 × 10 6 m size 12{6 "." 4 times "10" rSup { size 8{6} } } {} at its equator, what is the linear velocity at Earth’s surface?

A baseball pitcher brings his arm forward during a pitch, rotating the forearm about the elbow. If the velocity of the ball in the pitcher’s hand is 35.0 m/s and the ball is 0.300 m from the elbow joint, what is the angular velocity of the forearm?

117 rad/s

A truck with 0.420-m-radius tires travels at 32.0 m/s. What is the angular velocity of the rotating tires in radians per second? What is this in rev/min?

76.2 rad/s

728 rpm

Integrated Concepts When kicking a football, the kicker rotates his leg about the hip joint.

(a) If the velocity of the tip of the kicker’s shoe is 35.0 m/s and the hip joint is 1.05 m from the tip of the shoe, what is the shoe tip’s angular velocity?

(b) The shoe is in contact with the initially stationary 0.500 kg football for 20.0 ms. What average force is exerted on the football to give it a velocity of 20.0 m/s?

(c) Find the maximum range of the football, neglecting air resistance.

(a) 33.3 rad/s

(b) 500 N

(c) 40.8 m

Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Unit 4 - uniform circular motion and universal law of gravity. OpenStax CNX. Nov 23, 2015 Download for free at https://legacy.cnx.org/content/col11905/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Unit 4 - uniform circular motion and universal law of gravity' conversation and receive update notifications?

Ask