In most databases, it is possible to identify small partitions of the data where the observeddistribution is notably different from that of the database as a whole. In classical subgroup discovery, one considers the distribution of a single nominal attribute, and exceptional subgroups show a surprising increase in the occurrence of one of its values. In this talk, I'll introduce Exceptional Model Mining (EMM), a framework that allows for more complicated target concepts. Rather than finding subgroups based on the distribution of a single target attribute, EMM finds subgroups where a model fitted to that subgroup is somehow exceptional. I'll discuss regression as well as classification models, and define quality measures that determine how exceptional a given model on a subgroup is. Our framework is general enough to be applied to many types of models, even from other paradigms such as association analysis and graphical modeling.
Attribution: The Open Education Consortium
http://www.ocwconsortium.org/courses/view/65143c97f424b4071cec7cd520490d63/
Course Home http://videolectures.net/solomon_knobbe_emm/