
 Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us,

http://www2.austin.cc.tx.us/baldwin/

The AWT Package, Graphics and Colors - An Overview

Java Programming, Lecture Notes # 162, Revised 02/06/98.

 Preface

 Introduction

 The Graphics Class

o Constructors

o Methods of the Graphics Class

 Utility Methods for Graphics

 Drawing and Filling Shapes

 Drawing Text

 Clipping

 Drawing Images

 The Color Class

o Constructors

o Variables

o Methods of the Color Class

 Utility Methods for Colors

 Investigate a Color Object

 Create a Color Object

 For use with System Properties

 HSB Methods

 Summary

Preface

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for

knowing and understanding all of the material in this lesson.

Introduction

A previous lesson provided some sample programs which make use of the features of the

Graphics class and the Color class without much in the way of explanation. The purpose of this

lesson is to present an overview of the Graphics class and the Color class. Subsequent lessons

will explore many aspects of these classes in depth.

The Graphics Class

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/
java162.htm#methods of the graphics class
java162.htm#methods of the color class
java162.htm#summary

The Graphics class is a large and complex class. It is the abstract base class that provides all, or

at least most, of the functionality for an application to draw onto components and onto off-screen

images as well.

A Graphics object encapsulates the following state information that is needed for basic

rendering operations.

 The object of type Component on which to draw.

 A translation origin for rendering and clipping coordinates.

 The current clipped region.

 The current color.

 The current font.

 The current logical pixel operation function (XOR or Paint).

 The current XOR alternation color.

So, what happens when you use one of the Graphics methods to draw a line or a figure on a

Component? Here are some of the facts according to the JavaSoft documentation from JDK

1.1.3:

"Coordinates are infinitely thin and lie between the pixels of the output device.

Operations which draw the outline of a figure operate by traversing an infinitely thin path

between pixels with a pixel-sized pen that hangs down and to the right of the anchor point on the

path.

Operations which fill a figure operate by filling the interior of that infinitely thin path.

Operations which render horizontal text render the ascending portion of character glyphs entirely

above the baseline coordinate."

The fact that the graphics pen hangs down and to the right has some important implications:

If you draw a figure that covers a given rectangle, that figure occupies one extra row of pixels on

the right and bottom edges as compared to filling a figure that is bounded by that same rectangle.

We saw an example of this in a previous lesson where we drew a rectangle with the same

dimensions as the Canvas object on which it was drawn, and discovered that the right and

bottom borders of the rectangle hung off the edge of the object and were not visible.

Another implication is that if you draw a horizontal line along the same Y-coordinate as the

baseline of a line of text, that line will be drawn entirely below the text, except for any

descenders.

When you pass coordinates to the methods of a Graphics object, they are considered relative to

the translation origin of the Graphics object prior to the invocation of the method.

A Graphics object describes a graphics context. A graphics context has a current clip. Any

rendering operation that you perform will modify only those pixels which lie within the area

bounded by the current clip of the graphics context and the component that was used to create

the Graphics object.

When you draw or write, that drawing or writing is done in the current color using the current

paint mode in the current font.

Numerous other classes, such as the Rectangle class and the Polygon class are used in support

of operations involving the Graphics class.

Constructors

The Graphics class has a single constructor that takes no arguments. However, Graphics is an

abstract class so your applications cannot call the constructor directly. You can obtain a

Graphics context from another Graphics context by calling getGraphics() on a component.

You also receive a Graphics context as a parameter whenever you override either the paint() or

update() methods.

Methods of the Graphics Class

The Graphics class has many methods. The following sections contain a representative sampling

of those methods. I have attempted to group them into meaningful categories. A complete listing

of the methods along with a description of each is contained in the JavaSoft documentation for

the AWT.

Utility Methods for Graphics

clearRect(int, int, int, int) - Clears the specified rectangle by filling it with the background color

of the current drawing surface.

copyArea(int, int, int, int, int, int) - Copies an area of the component specified by the first four

parameters to another location on the graphics context at a distance specified by the last two

parameters.

create() - Creates a new Graphics object that is a copy of the Graphics object on which it is

invoked.

dispose() - Disposes of the graphics context on which it is invoked and releases any system

resources that it is using. This includes system resources other than memory. A Graphics object

cannot be used after dispose has been called. It is important that you manually dispose of your

Graphics objects (created directly from a component or other Graphics object) when you no

longer need them rather than to wait for finalization.

finalize() - Disposes of this graphics context once it is no longer referenced.

getColor() - Gets this graphics context's current color.

setColor(Color) - Sets this graphics context's current color to the specified color. Subsequent

graphics operations using this graphics context use this specified color.

setPaintMode() - Sets the paint mode of this graphics context to overwrite the destination with

this graphics context's current color (as opposed to XORMODE). Subsequent rendering

operations will overwrite the destination with the current color.

setXORMode(Color) - Sets the paint mode of this graphics context to alternate between this

graphics context's current color and the new specified color.

toString() - Returns a String object representing this Graphics object's value.

translate(int, int) - Translates the origin of the graphics context to the point (x, y) in the current

coordinate system.

Drawing and Filling Shapes

drawLine(int, int, int, int) - Draws a line, using the current color, between two points in this

graphics context's coordinate system.

drawPolyline(int[], int[], int) - Draws a sequence of connected lines defined by arrays of x and y

coordinates. The figure will not be closed if the first point differs from the last point.

drawRect(int, int, int, int) - Draws the outline of the specified rectangle using the current color

of the graphics context..

fillRect(int, int, int, int) - Fills the specified rectangle with the context's current color. Be sure to

check the documentation regarding the coordinates of the right edge and bottom edge of the

rectangle before using. This comment applies to all the fill methods.

drawRoundRect(int, int, int, int, int, int) - Draws an outlined round-cornered rectangle using

this graphics context's current color. You might need to look at a book containing a diagram to

learn how to specify how the corners are rounded.

fillRoundRect(int, int, int, int, int, int) - Fills the specified rounded corner rectangle with the

current color.

draw3DRect(int, int, int, int, boolean) - Draws a 3-D highlighted outline of the specified

rectangle. The edges of the rectangle are highlighted so that they appear to be beveled and lit

from the upper left corner. The boolean parameter determines whether the rectangle appears to

be raised above the surface or sunk into the surface. It is raised when the parameter is true.

fill3DRect(int, int, int, int, boolean) - Paints a 3-D highlighted rectangle filled with the current

color.

drawOval(int, int, int, int) - Draws the outline of an oval in the current color. When the last two

parameters are equal, this method draws a circle.

fillOval(int, int, int, int) - Fills an oval bounded by the specified rectangle with the current color.

As with drawOval(), when the last two parameters are equal, the method fills a circle.

drawArc(int, int, int, int, int, int) - Draws the outline of a circular or elliptical arc covering the

specified rectangle. You will probably need to examine the documentation to figure out how to

specify the parameters for this method as well as the fillArc() method.

fillArc(int, int, int, int, int, int) - Fills a circular or elliptical arc covering the specified rectangle.

drawPolygon(Polygon) - Draws the outline of a polygon defined by the specified Polygon

object. Another overloaded version is available that accepts a list of coordinate values to specify

the polygon. The following description of a Polygon object was taken from the JavaSoft

documentation for JDK 1.1.3.

"The Polygon class encapsulates a description of a closed, two-dimensional region within a

coordinate space. This region is bounded by an arbitrary number of line segments, each of which

is one side of the polygon. Internally, a polygon comprises of a list of (x, y) coordinate pairs,

where each pair defines a vertex of the polygon, and two successive pairs are the endpoints of a

line that is a side of the polygon. The first and final pairs of (x, y) points are joined by a line

segment that closes the polygon."

fillPolygon(Polygon) - Fills the polygon defined by the specified Polygon object with the

graphics context's current color. Another overloaded version is available that accepts a list of

coordinate values to specify the polygon.

Drawing Text

drawString(String, int, int) - Draws the text given by the specified string, using this graphics

context's current font and color.

drawChars(char[], int, int, int, int) - Draws the text given by the specified character array, using

this graphics context's current font and color. Another version lets you pass an array of bytes to

represent the characters to be drawn.

getFont() - Gets the current font and returns an object of type Font which describes the context's

current font.

getFontMetrics() - Gets the font metrics of the current font. Returns an object of type

FontMetrics. Methods of the FontMetrics class can be used to obtain metrics information (size,

etc.) about the font to which the getFontMetrics() method is applied.

getFontMetrics(Font) - Gets the font metrics for the specified font.

setFont(Font) - Sets this graphics context's font to the specified font.

Clipping

Clipping is the process of defining a region of the Graphics context inside of which the pixels

may be modified in some subsequent rendering process. Pixels outside the clip area are immune

from modification.

clipRect(int, int, int, int) - Intersects the current clip with the specified rectangle. This results in a

clipping area that is the intersection of the current clipping area and the specified rectangle.

Future rendering operations have no effect outside of the clipping area. This method can only be

used to reduce the size of the clipping area. It cannot be used to increase the size of the clipping

area.

getClip() - Gets the current clipping area and returns it as an object of type Shape. Note that

Shape is an interface. The following information and caution regarding the Shape interface was

taken from the JavaSoft documentation for JDK 1.1.3:

Shape: The interface for objects which represent some form of geometric shape.

This interface will be revised in the upcoming Java2D project. It is meant to provide a common

interface for various existing geometric AWT classes and methods which operate on them. Since

it may be superseded or expanded in the future, developers should avoid implementing this

interface in their own classes until it is completed in a later release.

getClipBounds() - Returns the bounding rectangle of the current clipping area.

setClip(int, int, int, int) - Sets the current clip to the rectangle specified by the given coordinates.

Drawing Images

There are about six different drawImage() methods, differing primarily by the features of the

method and the parameters passed in to support the features of that particular method. The

following method is one of the more complex ones and is representative of the group. We will

deal with the features of the methods and the associated parameters in the lessons on "Working

with Images".

drawImage(Image, int, int, int, int, int, int, int, int, Color, ImageObserver) - Draws as much of

the specified area of the specified image as is currently available, scaling it on the fly to fit inside

the specified area of the destination drawable surface.

The Color Class

The Color class is reasonably simple to understand and use. It encapsulates colors using the

RGB format. This is a format in which a particular color is created by adding contributions from

the primary colors: red, green, and blue.

In RGB format, the red, green, and blue components of a color are each represented by an

integer in the range 0-255.

The value 0 indicates no contribution from the associated primary color. A value of 255 indicates

the maximum intensity of the primary color component.

There is another color model called the HSB model (hue, saturation, and brightness). The Color

class provides a set of convenience methods for converting between RGB and HSB colors.

Variables

The Color class provides a set of static final variables which make it convenient to specify any

one of thirteen predefined colors.

All that is required to use these variables for the specification of a color is to reference the color

by variable name as illustrated in the following code fragment:

object.setBackground(Color.red);

The list of predefined color values in the class is:

 black

 blue

 cyan

 darkGray

 gray

 green

 lightGray

 magenta

 orange

 pink

 red

 white

 yellow

Constructors

There are three constructors that you can use to instantiate a Color object. Two allow you to

specify the contributions of red, green, and blue respectively as parameters. These two

constructors instantiate a new Color object of the proper color.

One of these two constructors allows you to specify the contributions of red, green, and blue with

integer values ranging between 0 and 255 where 0 represents no contribution of a particular

primary color and 255 represents a maximum contribution of the primary color. The description

of this constructor is:

Color(int, int, int) - Creates a color with the specified RGB components.

The other constructor in this category allows you to specify the contributions of the three

primary colors using float values ranging between 0.0 and 1.0. The description of this

constructor is:

Color(float, float, float) - Creates a color with the specified red, green, and blue values, where

each of the values is in the range 0.0-1.0.

Finally, you can also construct your own int color value and pass it as a parameter to one of the

three overloaded constructors. In this case, the format of the int must be as defined below:

Color(int) - Creates a color with the specified RGB value, where the red component is in bits

16-23 of the argument, the green component is in bits 8-15 of the argument, and the blue

component is in bits 0-7.

Methods of the Color Class

As of JDK 1.1.3, the following methods are available for use with colors. I have attempted to

group these methods into meaningful categories. A complete listing of the methods along with a

description of each is contained in the JavaSoft documentation for the AWT.

Utility Methods for Colors

equals(Object) - Determines whether another object is equal to this color.

hashCode() - Computes the hash code for this color.

toString() - Creates a string that represents this color and indicates the values of its RGB

components.

Investigate a Color Object

These methods return an integer that represents the composite RGB value of a particular Color

object.

getRed() - Gets the red component of this color as an integer in the range 0 to 255.

getGreen() - Gets the green component of this color as an integer in the range 0 to 255.

getBlue() - Gets the blue component of this color as an integer in the range of 0 to 255.

getRGB() - Gets the RGB value representing the color. The red, green, and blue components of

the color are each scaled to be a value between 0 and 255. Bits 24-31 of the returned integer are

0xff, bits 16-23 are the red value, bit 8-15 are the green value, and bits 0-7 are the blue value.

Create a Color Object

These methods return a Color object.

brighter() - Creates a brighter version of this color. This method was used in an earlier lesson

where I created a fake button and used this method to provide highlighting on the edges.

darker() - Creates a darker version of this color. This method was used in an earlier lesson

where I created a fake button and used this method to provide shadows on the edges.

decode(String) - Converts a string to an integer and returns the specified color.

For use with System Properties

These methods also return a Color object, but they are specialized to work with the System

Properties.

getColor(String) - Finds a color in the system properties. The String object is used as the key

value in the key/value scheme used to describe properties in Java. The value is then used to

return a Color object.

getColor(String, Color) - Finds a color in the system properties. Same as the previous method

except that the second parameter is returned if the first parameter doesn't result in a valid Color

object.

getColor(String, int) - Finds a color in the system properties. Similar to the previous method

except that the second parameter is used to instantiate and return a Color object.

HSB Methods

These methods are used to convert between the RGB color model and the HSB color model.

getHSBColor(float, float, float) - Creates a Color object based on values supplied for the HSB

color model.

HSBtoRGB(float, float, float) - Converts the components of a color, as specified by the HSB

model, to an equivalent set of values for the RGB model.

RGBtoHSB(int, int, int, float[]) - Converts the components of a color, as specified by the RGB

model, to an equivalent set of values for hue, saturation, and brightness, the three components of

the HSB model.

Summary

This lesson has presented an overview of the Graphics class and the Color class. Several

subsequent lessons will be dedicated to expanding on the material presented here.

One lesson will be dedicated to working with some of the utility methods in the Graphics class,

and specific lessons will be dedicated to working with shapes, text, clipping, and images.

In addition, the utility methods of the Graphics class and the methods and variables of the Color

class will be used throughout those lessons.

-end-

