
Fun with Java: Animated Sea Worms

Baldwin wraps up his series of lessons on animation. He has shown you how to use Java to

write programs that produce smooth animation of the sprite animation and frame animation

varieties. It's time for you to take that knowledge and do something fun with it. And don't forget,

Java programming can be fun.

Published: December 3, 2001

By Richard G. Baldwin

Java Programming, Lecture Notes # 1466

 Preface

 Preview

 Discussion and Sample Programs

 Summary

 Complete Program Listing

Preface

Fun programming

This is one of the lessons in a miniseries that will concentrate on having fun while programming

in Java.

This miniseries will include a variety of Java programming topics that fall in the category of fun

programming. This particular lesson is the ninth in of a group of lessons that will teach you how

to write animation programs in Java.

The first lesson in the group was entitled Fun with Java: Sprite Animation, Part 1. That lesson,

plus the next seven lessons provided an in-depth explanation of the use of Java for doing both

sprite and frame animation. The previous lesson was entitled Fun with Java: Frame Animation.

In this lesson, I will combine sprite animation with frame animation to produce animated sea

worms that change their color on a random basis while swimming in a fish tank.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Supplementary material

Java1450.htm
Java1464.htm

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at Baldwin's Java

Programming Tutorials.

Preview

This is one of a group of lessons that will teach you how to write animation programs in

Java. These lessons will teach you how to write sprite animation, frame animation, and a

combination of the two.

Slithering sea worms

The program that I will discuss in this lesson will use a combination of sprite animation and

frame animation, along with some other techniques to cause a group of multi-colored sea worms

to slither around in the fish tank. In addition to slithering, the sea worms will also change the

color of different parts of their body, much like real sea creatures.

A screen shot of the output from this program is shown in Figure 1.

Figure 1. Animated sea worms in a fish tank.

Getting the GIF image files

Figure 2 shows the GIF image files that you will need to run the program.

http://softwaredev.earthweb.com/java
http://www.geocities.com/Athens/7077/scoop/onjava.html
http://www.geocities.com/Athens/7077/scoop/onjava.html

Figure 2. GIF image files that you will need.

You should be able to capture the images by right-clicking on them individually, and then saving

them into files on your local disk. Having done that, you will need to rename the files to match

the names that are hard-coded into the program.

Discussion and Sample Program

Although this program is quite long, most of the program is identical to the program named

Animate02, which was discussed in the previous lesson.

Discuss new and different material

In this lesson, I will discuss only those parts of the program that are new or different from the

previous program. However, I have provided a copy of the entire program in Listing 8 near the

end of the lesson. You can copy it into a source file on your local disk, compile it, run it, and see

the results.

Some history may be required

Because I will be discussing only that code that is new or different, it may be necessary for you

to go back and study the previous programs named Animate01 and Animate02, in order to

understand this program.

Primary differences

The primary difference between this program and the previous program named Animate02 can

be summarized as follows:

The previous program animated 15 spherical sea creatures, which swam around and changed

their color according to a specific algorithm having to do with selecting the next color, the

duration of a color, etc.

This program animates a similar number of sea worms, which swim around and change their

color also. However, this program uses a random number generator to determine the color for

each segment of each sea worm.

Good news and bad news

As a result, the code for dealing with color in this program is somewhat simpler than in the

previous program. On the other hand, this program contains the code necessary to create sea

worms instead of spherical sea creatures. That code is a little more complicated than in the

previous program.

All of the changes that were made to this program relative to the previous program named

Animate02 were made to the class named Sprite. In addition, a new class named History was

defined for use in this program.

Discuss in fragments

As usual, I will discuss the program in fragments. I'm going to begin with the new History

class.

Sea worms constructed from spheres

The mechanism used to draw the sea worms in this program is to draw a series of colored

spheres each time the Sprite object is asked to draw itself (each segment of a sea worm is a

sphere).

The head is a new sphere

The head of the sea worm is a new sphere. The remaining portion of the sea worm is produced

by redrawing a given number of the spheres that appeared in the previous animation cycles.

Discard the tail

For a given length worm, a new head is created during each animation cycle, and the sphere that

makes up the end of the tail is discarded. This causes the sea worm to appear to move in a

forward direction.

Historical data required

To accomplish this, it was necessary to retain historical information about where the head has

been, and what color it was when it was there. That is the purpose of the class named History.

Each sprite owns a Vector collection of objects of the class History, with the number of

elements in the collection being equal to the length of that particular sea worm.

Once during each animation cycle, a new History object is added to the end of the collection and

the History object at the beginning of the collection is discarded.

The class named History

The History class is shown in Listing 1 below.

class History{

 Image image;

 int x;

 int y;

 History(Image image, int x, int y){

 this.image = image;

 this.x = x;

 this.y = y;

 }//end constructor

}//end class History

Listing 1

As you can see, each object instantiated from this class contains the coordinate values to be used

to draw the segment of the worm described by the object along with a reference to the Image

object used to provide the visual manifestation for that segment of the worm.

Sprites take care of themselves

The Sprite class is the workhorse of this program.

Every one of the sprites swimming around in the fish tank is an object of the class named

Sprite. As is the typical objective in object-oriented programming, a sprite knows how to take

care of itself.

What does a sprite know?

For example, an object of the Sprite class knows how to tell other objects about the space that it

occupies in the fish tank. It knows how to tell other objects about its motion vector, which

determines the speed and direction of its motion.

It knows how to use its motion vector in conjunction with a random number generator to

incrementally advance its position to the next location in its movement through the water. In so

doing, it knows how to protect itself from excessive speed.

It knows how to bounce if it runs into one of the walls of the fish tank. When this happens, it

modifies its motion vector accordingly.

When requested to do so, it knows how to draw itself onto a graphics context that it receives

along with the request.

When requested to do so, it can determine if its head has collided with the head of another sea

worm sprite whose reference it receives along with the request.

Finally, it knows how to use an array of images to change how it looks over time.

Lots of similar code

Most of the code in this revised Sprite class is identical to the code in the Sprite class used in

the previous program named Animate02. In keeping with the spirit of this lesson, I will not

discuss the code that I discussed in the previous lessons. Rather, for the most part, I will discuss

only that code that is new or different. When you see //... in the code fragments, that means that

code was omitted for brevity.

The Sprite class

Listing 2 shows the beginning of the Sprite class along with two new instance variables.

class Sprite {

 //...

 private Vector tailData =

 new

Vector();

 private int wormLength;

Listing 2

Length of the sea worm

The int variable named wormLength is used to store the number of segments belonging to a

particular sea worm instantiated from the Sprite class. We will see that the value for

wormLength is obtained from a random number generator when the sprite is instantiated. Thus,

the animation has sea worms of different lengths swimming about.

Data about the tail

The Vector object referred to by tailData is used to store the most recent coordinate and image

data for the sprite in the form of references to History objects.

The number of elements stored in tailData is equal to the value of wormLength. When the

Sprite object is asked to draw itself, it draws one segment for each element in tailData, using

the location and image information stored in the History object referred to by that element in

tailData.

The constructor

Listing 3 shows an abbreviated listing for the constructor for this version of the Sprite

class. Most of the code has been removed for brevity because I discussed it in earlier lessons.

 public Sprite(Component component,

 Image[] image,

 Point position,

 Point motionVector){

 //...

 wormLength = Math.abs(

 rand.nextInt() %

20);

 //...

 }//end constructor

Listing 3

The value of wormLength is set to a positive random number between 0 and 20.

The new head

The only thing that is really new in this program is some of the code in the drawSpriteImage

method, which begins in Listing 4.

 public void drawSpriteImage(

 Graphics

g){

 frame = Math.abs(

 rand.nextInt() %

6);

Listing 4

The code in Listing 4 uses the absolute value of a random integer, modulo 6 to set the value for

frame. This value is used later to select the image that will be used to represent the new head

segment for the sea worm.

Color of the head

The code in Listing 5 adds a new History object to the collection of objects in the tailData

object. The History object is populated with a reference to an Image object extracted from the

array of references to Image objects where the random value of frame computed earlier is used

as an index. This establishes the color of the new head of the sea worm.

 tailData.add(new History(

 image[frame],

 spaceOccupied.x,

 spaceOccupied.y));

Listing 5

Getting an Iterator

The code in Listing 6 gets a standard Iterator object on the Vector object referred to by

tailData. (If you are unfamiliar with iterators, you might want to refer to my lessons on the Java

Collections Framework on my website.)

 Iterator iterator =

 tailData.iterator();

Listing 6

Using the Iterator to draw the sea worm

The code in Listing 7 uses the iterator to traverse the Vector list and access each of the History

objects (in order from tail to head).

As each History object is accessed, it is drawn on the screen using the drawImage method.

 int cnt = 0;

 while(iterator.hasNext()){

 History history =

 (History)iterator.next();

 if(tailData.size()>wormLength &&

 cnt == 0)

 iterator.remove();

 g.drawImage(history.image,

 history.x,

 history.y,

 component);

 cnt++;

 }//end while

 }//end drawSpriteImage()

Listing 7

Here's looking at you

Because the element at the end of the list (the newest element) is drawn last, it appears to

partially cover the drawing for the previous elements. This gives the impression that the sea

worms are always facing out of the screen as they swim.

Discarding the tail segment

The remove capability of the iterator is used to remove the oldest element from the list during the

traversal of the list.

Summary

That's a wrap for now on this series of lessons on animation. I may come back later and add

some more lessons if I think of something else that would be interesting to discuss.

In the meantime, you now know how to use Java to write programs that produce smooth

animation of the sprite animation and frame animation varieties. It's time for you to take your

newfound knowledge and do something fun with it.

And don't forget, Java programming can be fun.

Complete Program Listing

A complete listing of the program is provided in Listing 8.

/*File Animate03.java

Copyright 2001, R.G.Baldwin

This program displays several

multicolored sea worms swimming around

in an aquarium. Each seaworm maintains

generally the same course until it

collides with the head of another

sea worm or with a wall. However, the

sea worms have the ability to change

course based on the addition or

subtraction of random values from the

components of their motion vector

about once in every ten updates. The

opportunity to change course is also

random. The length of each sea worm

may be different based on a random

number gererator.

A sea worm is constructed of segments

where each segment is a colored ball.

Each sea worm uses frame animation to

change the color of each segment.

Each segment switches among red,

green, blue, yellow, purple, and

orange on a random basis.

**************************************/

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class Animate03 extends Frame

 implements Runnable{

 //This class is identical to

 // Animate01 with the exception of

 // the method named makeSprite

 private Image offScreenImage;

 private Image backGroundImage;

 private Image[] gifImages =

 new Image[6];

 //offscreen graphics context

 private Graphics

 offScreenGraphicsCtx;

 private Thread animationThread;

 private MediaTracker mediaTracker;

 private SpriteManager spriteManager;

 //Animation display rate, 12fps

 private int animationDelay = 83;

 private Random rand =

 new Random(System.

 currentTimeMillis());

 public static void main(

 String[] args){

 new Animate03();

 }//end main

 //---------------------------------//

 Animate03() {//constructor

 // Load and track the images

 mediaTracker =

 new MediaTracker(this);

 //Get and track the background

 // image

 backGroundImage =

 Toolkit.getDefaultToolkit().

 getImage("background02.gif");

 mediaTracker.addImage(

 backGroundImage, 0);

 //Get and track 6 images to use

 // for sprites

 gifImages[0] =

 Toolkit.getDefaultToolkit().

 getImage("redball.gif");

 mediaTracker.addImage(

 gifImages[0], 0);

 gifImages[1] =

 Toolkit.getDefaultToolkit().

 getImage("greenball.gif");

 mediaTracker.addImage(

 gifImages[1], 0);

 gifImages[2] =

 Toolkit.getDefaultToolkit().

 getImage("blueball.gif");

 mediaTracker.addImage(

 gifImages[2], 0);

 gifImages[3] =

 Toolkit.getDefaultToolkit().

 getImage("yellowball.gif");

 mediaTracker.addImage(

 gifImages[3], 0);

 gifImages[4] =

 Toolkit.getDefaultToolkit().

 getImage("purpleball.gif");

 mediaTracker.addImage(

 gifImages[4], 0);

 gifImages[5] =

 Toolkit.getDefaultToolkit().

 getImage("orangeball.gif");

 mediaTracker.addImage(

 gifImages[5], 0);

 //Block and wait for all images to

 // be loaded

 try {

 mediaTracker.waitForID(0);

 }catch (InterruptedException e) {

 System.out.println(e);

 }//end catch

 //Base the Frame size on the size

 // of the background image.

 //These getter methods return -1 if

 // the size is not yet known.

 //Insets will be used later to

 // limit the graphics area to the

 // client area of the Frame.

 int width =

 backGroundImage.getWidth(this);

 int height =

 backGroundImage.getHeight(this);

 //While not likely, it may be

 // possible that the size isn't

 // known yet. Do the following

 // just in case.

 //Wait until size is known

 while(width == -1 || height == -1){

 System.out.println(

 "Waiting for image");

 width = backGroundImage.

 getWidth(this);

 height = backGroundImage.

 getHeight(this);

 }//end while loop

 //Display the frame

 setSize(width,height);

 setVisible(true);

 setTitle(

 "Copyright 2001, R.G.Baldwin");

 //Create and start animation thread

 animationThread = new Thread(this);

 animationThread.start();

 //Anonymous inner class window

 // listener to terminate the

 // program.

 this.addWindowListener(

 new WindowAdapter(){

 public void windowClosing(

 WindowEvent e){

 System.exit(0);}});

 }//end constructor

 //---------------------------------//

 public void run() {

 //Create and add sprites to the

 // sprite manager

 spriteManager = new SpriteManager(

 new BackgroundImage(

 this, backGroundImage));

 //Create 15 sprites from 6 gif

 // files.

 for (int cnt = 0; cnt < 15; cnt++){

 Point position = spriteManager.

 getEmptyPosition(new Dimension(

 gifImages[0].getWidth(this),

 gifImages[0].

 getHeight(this)));

 spriteManager.addSprite(

 makeSprite(position, cnt % 6));

 }//end for loop

 //Loop, sleep, and update sprite

 // positions once each 83

 // milliseconds

 long time =

 System.currentTimeMillis();

 while (true) {//infinite loop

 spriteManager.update();

 repaint();

 try {

 time += animationDelay;

 Thread.sleep(Math.max(0,time -

 System.currentTimeMillis()));

 }catch (InterruptedException e) {

 System.out.println(e);

 }//end catch

 }//end while loop

 }//end run method

 //---------------------------------//

 private Sprite makeSprite(

 Point position, int imageIndex){

 return new Sprite(

 this,

 gifImages,

 position,

 new Point(rand.nextInt() % 5,

 rand.nextInt() % 5));

 }//end makeSprite()

 //---------------------------------//

 //Overridden graphics update method

 // on the Frame

 public void update(Graphics g) {

 //Create the offscreen graphics

 // context

 if (offScreenGraphicsCtx == null) {

 offScreenImage =

 createImage(getSize().width,

 getSize().height);

 offScreenGraphicsCtx =

 offScreenImage.getGraphics();

 }//end if

 // Draw the sprites offscreen

 spriteManager.drawScene(

 offScreenGraphicsCtx);

 // Draw the scene onto the screen

 if(offScreenImage != null){

 g.drawImage(

 offScreenImage, 0, 0, this);

 }//end if

 }//end overridden update method

 //---------------------------------//

 //Overridden paint method on the

 // Frame

 public void paint(Graphics g) {

 //Nothing required here. All

 // drawing is done in the update

 // method above.

 }//end overridden paint method

}//end class Animate01

//===================================//

class BackgroundImage{

 //This class is identical to that

 // used in Animate01

 private Image image;

 private Component component;

 private Dimension size;

 public BackgroundImage(

 Component component,

 Image image) {

 this.component = component;

 size = component.getSize();

 this.image = image;

 }//end construtor

 public Dimension getSize(){

 return size;

 }//end getSize()

 public Image getImage(){

 return image;

 }//end getImage()

 public void setImage(Image image){

 this.image = image;

 }//end setImage()

 public void drawBackgroundImage(

 Graphics g) {

 g.drawImage(

 image, 0, 0, component);

 }//end drawBackgroundImage()

}//end class BackgroundImage

//===========================

class SpriteManager extends Vector {

 private BackgroundImage

 backgroundImage;

 //This class is identical to that

 // used in Animate01

 public SpriteManager(

 BackgroundImage backgroundImage) {

 this.backgroundImage =

 backgroundImage;

 }//end constructor

 //---------------------------------//

 public Point getEmptyPosition(

 Dimension spriteSize){

 Rectangle trialSpaceOccupied =

 new Rectangle(0, 0,

 spriteSize.width,

 spriteSize.height);

 Random rand =

 new Random(

 System.currentTimeMillis());

 boolean empty = false;

 int numTries = 0;

 // Search for an empty position

 while (!empty && numTries++ < 100){

 // Get a trial position

 trialSpaceOccupied.x =

 Math.abs(rand.nextInt() %

 backgroundImage.

 getSize().width);

 trialSpaceOccupied.y =

 Math.abs(rand.nextInt() %

 backgroundImage.

 getSize().height);

 // Iterate through existing

 // sprites, checking if position

 // is empty

 boolean collision = false;

 for(int cnt = 0;cnt < size();

 cnt++){

 Rectangle testSpaceOccupied =

 ((Sprite)elementAt(cnt)).

 getSpaceOccupied();

 if (trialSpaceOccupied.

 intersects(

 testSpaceOccupied)){

 collision = true;

 }//end if

 }//end for loop

 empty = !collision;

 }//end while loop

 return new Point(

 trialSpaceOccupied.x,

 trialSpaceOccupied.y);

 }//end getEmptyPosition()

 //---------------------------------//

 public void update() {

 Sprite sprite;

 //Iterate through sprite list

 for (int cnt = 0;cnt < size();

 cnt++){

 sprite = (Sprite)elementAt(cnt);

 //Update a sprite's position

 sprite.updatePosition();

 //Test for collision. Positive

 // result indicates a collision

 int hitIndex =

 testForCollision(sprite);

 if (hitIndex >= 0){

 //a collision has occurred

 bounceOffSprite(cnt,hitIndex);

 }//end if

 }//end for loop

 }//end update

 //---------------------------------//

 private int testForCollision(

 Sprite testSprite) {

 //Check for collision with other

 // sprites

 Sprite sprite;

 for (int cnt = 0;cnt < size();

 cnt++){

 sprite = (Sprite)elementAt(cnt);

 if (sprite == testSprite)

 //don't check self

 continue;

 //Invoke testCollision method

 // of Sprite class to perform

 // the actual test.

 if (testSprite.testCollision(

 sprite))

 //Return index of colliding

 // sprite

 return cnt;

 }//end for loop

 return -1;//No collision detected

 }//end testForCollision()

 //---------------------------------//

 private void bounceOffSprite(

 int oneHitIndex,

 int otherHitIndex){

 //Swap motion vectors for

 // bounce algorithm

 Sprite oneSprite =

 (Sprite)elementAt(oneHitIndex);

 Sprite otherSprite =

 (Sprite)elementAt(otherHitIndex);

 Point swap =

 oneSprite.getMotionVector();

 oneSprite.setMotionVector(

 otherSprite.getMotionVector());

 otherSprite.setMotionVector(swap);

 }//end bounceOffSprite()

 //---------------------------------//

 public void drawScene(Graphics g){

 //Draw the background and erase

 // sprites from graphics area

 //Disable the following statement

 // for an interesting effect.

 backgroundImage.

 drawBackgroundImage(g);

 //Iterate through sprites, drawing

 // each sprite

 for (int cnt = 0;cnt < size();

 cnt++)

 ((Sprite)elementAt(cnt)).

 drawSpriteImage(g);

 }//end drawScene()

 //---------------------------------//

 public void addSprite(Sprite sprite){

 add(sprite);

 }//end addSprite()

}//end class SpriteManager

//===================================//

class Sprite {

 private Component component;

 private Image[] image;

 private Rectangle spaceOccupied;

 private Point motionVector;

 private Rectangle bounds;

 private Random rand;

 private int frame;

 private Vector tailData =

 new Vector();

 private int wormLength;

 public Sprite(Component component,

 Image[] image,

 Point position,

 Point motionVector){

 //Seed a random number generator

 // for this sprite with the sprite

 // position.

 rand = new Random(position.x);

 wormLength = Math.abs(

 rand.nextInt() % 20);

 this.component = component;

 this.image = image;

 setSpaceOccupied(new Rectangle(

 position.x,

 position.y,

 image[0].getWidth(component),

 image[0].getHeight(component)));

 this.motionVector = motionVector;

 //Compute edges of usable graphics

 // area

 int topBanner = (

 (Container)component).

 getInsets().top;

 int bottomBorder = (

 (Container)component).

 getInsets().bottom;

 int leftBorder = (

 (Container)component).

 getInsets().left;

 int rightBorder = (

 (Container)component).

 getInsets().right;

 bounds = new Rectangle(

 0 + leftBorder,

 0 + topBanner,

 component.getSize().width -

 (leftBorder + rightBorder),

 component.getSize().height -

 (topBanner + bottomBorder));

 }//end constructor

 //---------------------------------//

 public Rectangle getSpaceOccupied(){

 return spaceOccupied;

 }//end getSpaceOccupied()

 //---------------------------------//

 void setSpaceOccupied(

 Rectangle spaceOccupied){

 this.spaceOccupied = spaceOccupied;

 }//setSpaceOccupied()

 //---------------------------------//

 public void setSpaceOccupied(

 Point position){

 spaceOccupied.setLocation(

 position.x, position.y);

 }//setSpaceOccupied()

 //---------------------------------//

 public Point getMotionVector(){

 return motionVector;

 }//end getMotionVector()

 //---------------------------------//

 public void setMotionVector(

 Point motionVector){

 this.motionVector = motionVector;

 }//end setMotionVector()

 //---------------------------------//

 public void setBounds(

 Rectangle bounds){

 this.bounds = bounds;

 }//end setBounds()

 //---------------------------------//

 public void updatePosition() {

 Point position = new Point(

 spaceOccupied.x, spaceOccupied.y);

 //Insert random behavior. During

 // each update, a sprite has about

 // one chance in 10 of making a

 // small random change to its

 // motionVector. When a change

 // occurs, the motionVector

 // coordinate values are forced to

 // fall between -7 and 7.

 if(rand.nextInt() % 10 == 0){

 Point randomOffset =

 new Point(rand.nextInt() % 3,

 rand.nextInt() % 3);

 motionVector.x += randomOffset.x;

 if(motionVector.x >= 7)

 motionVector.x -= 7;

 if(motionVector.x <= -7)

 motionVector.x += 7;

 motionVector.y += randomOffset.y;

 if(motionVector.y >= 7)

 motionVector.y -= 7;

 if(motionVector.y <= -7)

 motionVector.y += 7;

 }//end if

 //Make the move

 position.translate(

 motionVector.x, motionVector.y);

 //Bounce off the walls

 boolean bounceRequired = false;

 Point tempMotionVector =

 new Point(motionVector.x,

 motionVector.y);

 //Handle walls in x-dimension

 if (position.x < bounds.x) {

 bounceRequired = true;

 position.x = bounds.x;

 //reverse direction in x

 tempMotionVector.x =

 -tempMotionVector.x;

 }else if((position.x +

 spaceOccupied.width) >

 (bounds.x + bounds.width)){

 bounceRequired = true;

 position.x = bounds.x +

 bounds.width -

 spaceOccupied.width;

 //reverse direction

 tempMotionVector.x =

 -tempMotionVector.x;

 }//end else if

 //Handle walls in y-dimension

 if (position.y < bounds.y){

 bounceRequired = true;

 position.y = bounds.y;

 tempMotionVector.y =

 -tempMotionVector.y;

 }else if ((position.y +

 spaceOccupied.height) >

 (bounds.y + bounds.height)){

 bounceRequired = true;

 position.y =

 bounds.y +

 bounds.height -

 spaceOccupied.height;

 tempMotionVector.y =

 -tempMotionVector.y;

 }//end else if

 //save new motionVector

 if (bounceRequired)

 setMotionVector(tempMotionVector);

 //update spaceOccupied

 setSpaceOccupied(position);

 }//end updatePosition()

 //---------------------------------//

 public void drawSpriteImage(

 Graphics g){

 frame = Math.abs(

 rand.nextInt() % 6);

 tailData.add(new History(

 image[frame],

 spaceOccupied.x,

 spaceOccupied.y));

 Iterator iterator =

 tailData.iterator();

 int cnt = 0;

 while(iterator.hasNext()){

 History history =

 (History)iterator.next();

 if(tailData.size()>wormLength &&

 cnt == 0)

 iterator.remove();

 g.drawImage(history.image,

 history.x,

 history.y,

 component);

 cnt++;

 }//end while

 }//end drawSpriteImage()

 public boolean testCollision(

 Sprite testSprite){

 // Check for collision with another

 // sprite

 if (testSprite != this){

 return spaceOccupied.intersects(

 testSprite.getSpaceOccupied());

 }//end if

 return false;

 }//end testCollision

}//end Sprite class

//===================================//

class History{

 Image image;

 int x;

 int y;

 History(Image image, int x, int y){

 this.image = image;

 this.x = x;

 this.y = y;

 }//end constructor

}//end class History

Listing 8

Copyright 2001, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java and XML. In addition to the

many platform-independent benefits of Java applications, he believes that a combination of Java

and XML will become the primary driving force in the delivery of structured information on the

Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

