
Fun with Java: Biomorphs and Artificial Life

Baldwin shows you how to write an artificial life program that models selective breeding,

sometimes referred to as artificial selection.

Published: April 27, 2004

By Richard G. Baldwin

Java Programming, Lecture Notes # 1480

 Preface

 Preview

 Discussion and Sample Programs

 Run the Programs

 Summary

 Complete Program Listing

Preface

Programming in Java doesn't have to be dull and boring. In fact, it's possible to have a lot of fun

while programming in Java. This lesson will concentrate on having fun while learning

something at the same time.

In this lesson, I will show you how to write programs that model the selective breeding process,

sometimes referred to as artificial selection. This is as opposed to natural selection, sometimes

referred to as survival of the fittest.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

Preview

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/

Artificial life

In this lesson, I will present and explain a program that falls in the general category of Artificial

Life. In the book with the same title, Christopher Langton tells us "Artificial Life is the study of

man-made systems that exhibit behavior characteristics of natural living systems."

I will present and explain three separate programs (three man-made systems). The first two

programs provide background information designed to help you understand the behavior of the

more-important third program.

The third program exhibits behavior commonly referred to as evolution. In particular, this

program exhibits the behavior of artificial selection (as opposed to natural selection). Artificial

selection makes it possible to evolve creatures (such as Dalmation dogs) that accentuate certain

desirable characteristics (such as black spots on a white coat) and suppress other less desirable

characteristics (such as a shaggy red coat).

Natural selection versus artificial selection

For example, the variety of plants, animals, and birds that exist on an uninhabited island

represent natural selection, sometimes referred to as survival of the fittest. A Dalmation dog, on

the other hand, is probably the result of artificial selection. In other words, over a long period of

time, people selected certain dogs for breeding to accentuate certain characteristics (such as

black spots on a white coat) and to suppress other characteristics (such as a shaggy red coat).

Over time, what resulted was a type of dog that we know as the Dalmation.

Those who participated in the process of artificial selection resulting in a Dalmation dog may not

have known that those characteristics were represented by genes that were accentuated or

suppressed through selective breeding. However, we know (or at least believe) that to be the

case now.

Selectively breeding Biomorph objects

The third program that I will present and explain makes it possible for you to selectively breed

successive generations of artificial creatures known as Biomorph objects.

(For brevity, I will refer to a Biomorph object as a Biomorph and will refer to

multiple Biomorph objects as Biomorphs.)

Each Biomorph is a recursively branching tree consisting of many branches (stems) of different

lengths that branch off in different directions. For example, Figure 1 shows nine stages in the

growth of a simple Biomorph.

Figure 1 Nine stages in the growth of a Biomorph.

Biomorph genes

Each Biomorph has eight genes that control the size, the number, and the angle of the branches.

Reproduction

In the third program that I will present and explain, a single parent in each generation produces

eight offspring in the next generation.

During the creation of each new generation of offspring, one of the genes for each of the eight

offspring is randomly mutated to produce a creature that is similar to, but different from its

parent. Thus each of the eight siblings in a single generation differs from the parent by the value

of a single gene. Each of the eight siblings has a mutated value in a different gene, so no two

offspring are exactly alike.

Stage versus generation

I probably need to explain the difference between the terms stage and generation. In human or

plant terms, stage is somewhat analogous to age. For example, many plants grow a set of new

branches during each growing season. A five year old tree, for example, will normally have

more branches than a one year old tree. Similarly, a five-stage Biomorph will have more

branches than a one-stage Biomorph, as illustrated in Figure 1.

However, many trees can produce a new generation of offspring at any age, or at least at any age

beyond some minimum age. The same is true of Biomorphs. A Biomorph can become the

parent of a new generation of Biomorphs at any stage. There is no such thing as puberty in the

word of Biomorphs.

Illustrating stage versus generation

Figure 1 illustrates the stages in the growth of a Biomorph.

Figure 2 illustrates Biomorph reproduction. The Biomorph in the lower right-most corner of

Figure 2 was the parent of the eight other Biomorphs shown in Figure 2. Thus, the Biomorph in

the lower right-most corner represents one generation and the eight offspring represent the next

generation.

Figure 2 Illustration of Biomorph reproduction

Note how the complexity of the Biomorphs in Figure 1 progresses from least complex to most

complex as you move from top left to lower right on a line-by-line basis. On the other hand, all

of the Biomorphs in Figure 2 are of similar complexity, because they are all offspring of the

Biomorph in the bottom right-most corner in Figure 2.

Artificial selection

In the third program that I will explain in this lesson, you can select one of the offspring from

each new generation of Biomorphs to become the parent of the next generation. Through careful

selection, you can accentuate certain characteristics of the Biomorph family and suppress other

characteristics. By continuing this process through several generations, you can cause the

resulting Biomorphs to resemble birds, bugs, animals, airplanes, human faces, or whatever

strikes your fancy.

(Skipping ahead a bit, Figure 10 shows the result of using artificial selection to

breed a family of Biomorphs that resemble stealth aircraft.)

Acknowledgement

This program is loosely based on Chapter 8 of the book entitled Windows Hothouse by Mark

Clarkson. That chapter was based on a book and a paper published by Richard

Dawkins. Dawkins' book is entitled The Blind Watchmaker. The paper was entitled The

Evolution of Evolvability and appeared in the book entitled Artificial Life.

Discussion and Sample Program

As mentioned earlier, I will present and explain three different programs in this lesson. Only the

third program supports the artificial selection process. The first two programs are designed to

help you to understand the third program.

The Biomorph class

All three programs make use of a common class named Biomorph. Objects instantiated from

this class are central to all three programs, so I will begin by presenting and explaining the

Biomorph class.

This class is used to instantiate a Biomorph object. As mentioned earlier, it is based loosely on

Chapter 8 of the book entitled Windows Hothouse by Mark Clarkson. However, the C++

algorithm presented in that book appears to contain several typographical errors. It was

necessary for me to find and fix those errors when writing a Java version of the algorithm.

Construction of the Biomorph

The constructor for the Biomorph class receives an array of eight gene values. (I will discuss

the first seven values in the gene array later.) The eighth value in the array specifies the number

of stages used to construct the Biomorph.

(For example, the value of the eighth gene was 1 for the Biomorph shown in the

top left-most corner of Figure 1. The value of the eighth gene was 9 for the

Biomorph shown in the bottom right-most corner.)

Stages of growth

The Biomorph in the top left-most corner of Figure 1 shows the result of one stage of growth for

a simple Biomorph.

The Biomorph in the bottom right-most corner of Figure 1 shows the result of nine stages of

growth for the same simple Biomorph. For this Biomorph, the first seven gene values were all

1.0.

(The gene values are essentially whole numbers, but I treated them as type double

instead of type int to avoid the possibility of integer arithmetic problems.)

Bifurcating stems

The first stage of construction produces a single stem as shown by the top left-most Biomorph in

Figure 1. Each successive stage causes all existing stems to bifurcate into two new stems. You

can clearly see this bifurcation process by examining the three Biomorphs in the top row of

Figure 1. The left-most Biomorph is a single-stage Biomorph. The right-most Biomorph is a

three-stage Biomorph, and the one is the center of the top row is a two-stage Biomorph.

You can also see this behavior in the fourth and fifth-stage Biomorphs in the two left-most

positions in the center row. By the time you get to the six-stage Biomorph in the right-most

position in the center row, however, the stems start to overlap and it is more difficult to visually

distinguish the bifurcation process.

Increase by a power of two

Thus, the number of individual stems belonging to a Biomorph increases as a power of two

based on the number of stages used in its creation. For example, a Biomorph created with two

stages contains three stems as shown in the center of the top row in Figure 1. A three-stage

Biomorph contains seven stems as shown by the right-most object in the top row of Figure 1. A

four-stage Biomorph contains fifteen stems, etc.

(Those of you who are familiar with the binary number system will recognize the

series 1, 3, 7, 15, 31, 63, etc. as being values that commonly arise in the binary

number system. For example, a four-bit unsigned binary number can contain any

of the values from 0 through 15 inclusive.)

Arithmetic accuracy

The algorithm in Clarkson's book is based on the use of integer gene values. However, when

writing the Java version of the algorithm, I elected to maintain all of the data as type double in

order to avoid the possibility of integer arithmetic problems, particularly when scaling the data

for display. Values in my version of the algorithm are converted from double to int at the very

last step before displaying the Biomorph on the screen.

Gene mutation

As you will see later when we examine the code for the Biomorph class, the constructor receives

a random number generator and a count value that are used to mutate the genes.

One gene in the array of genes is mutated by a random value of plus or minus one whenever the

count value is within the range from 0 through 7 inclusive. The actual gene that is mutated is the

one whose position in the gene array matches the count value. If the count value is outside this

range, there is no gene mutation.

Returning the mutated gene array

A method named getGenes returns the gene array containing the possibly mutated gene. This is

useful for experiments in artificial selection, such as the third program that I will present and

explain in this lesson.

Scaling the plot for display

The constructor receives a scale factor that is used to adjust the overall size of the picture for

each individual Biomorph in an attempt to cause it to fit in the allocated plotting area.

Generally speaking, the size of the raw display of a Biomorph increases as the number of stages

increases. When the scale factor is used later, coordinate values are multiplied by the reciprocal

of the scale factor. Therefore, it is useful to cause the scale factor to increase as the number of

stages increases. As you will see when you experiment with the second and third programs,

sometimes even this is not sufficient to keep the size of an individual Biomorph within the

allocated area.

Positioning the plot

The constructor receives a pair of int values that are used to move the plotting origin from the

default upper-left corner to another location in the plotting area. All three programs presented in

this lesson position the plotting origin at the center of each of the nine individual plotting areas

shown in Figure 1.

Direction of the first stem

The direction of the first stem displayed for the Biomorph is hard-coded to be vertical going up

the screen, starting at the origin.

Beginning of the Biomorph class

As is my custom, I will discuss these three programs in fragments. You will find complete

listings of the programs in Listing 31, Listing 32, and Listing 33 near the end of the lesson.

The code fragment in Listing 1 shows the beginning of the Biomorph class used in all three

programs.

class Biomorph extends Panel{

 double[] xInc = new double[8];

 double[] yInc = new double[8];

 double[] genes;

 double xCoor = 0;//Start drawing

here

 double yCoor = 0;//Start drawing

here

 int direction = 0;//Initial drawing

direction

 double length;

 double scale;

 int xOrigin;

 int yOrigin;

Listing 1

Listing 1 simply declares some instance variables, initializing some of them. The purpose of

these variables will become clear in the discussion that follows.

Constructor for the Biomorph class

The constructor begins in Listing 2. The purpose of each of the constructor parameters was

discussed in the preceding paragraphs.

 Biomorph(double[] genes,

 Random rGen,

 int cnt,

 double scale,

 int xOrigin,

 int yOrigin){

 this.genes =

(double[])genes.clone();

 this.scale = scale;

 this.xOrigin = xOrigin;

 this.yOrigin = yOrigin;

Listing 2

Save local copies

The code in Listing 2 saves copies of four of the incoming parameters in instance

variables. These are parameter values that require access within the class but outside the

constructor.

Cloning the gene array

Note in particular that the clone method is used to save a copy of the incoming array of gene

values. This is necessary to prevent the code from changing gene values in the original gene

array passed to the constructor. In some cases, the same gene array will be used for constructing

multiple objects of the Biomorph class, and the construction of any one of those objects cannot

be allowed to modify the values stored in the original gene array.

Mutate a gene

Listing 3 mutates one of the genes stored in the local copy of the gene array, provided that the

value of cnt is within the range from 0 through 7 inclusive.

 if((cnt>=0) && (cnt<=7)){

 double mutantValue =

rGen.nextInt(2)*2-1;

 this.genes[cnt] += mutantValue;

 //Don't allow the eighth gene to

go

 // negative

 if(this.genes[7] <

0)this.genes[7] = 0;

 }//end if

Listing 3

The particular gene that is mutated is specified by the value of cnt. If cnt is outside the specified

range, no gene mutation takes place.

Mutation changes the gene value

When mutation does take place, the value of the gene is increased or decreased by a value of

1.0. The determination as to whether to increase or decrease the value is based on a random

number generator. You can examine the documentation for the library class named Random if

need be to understand how this code works.

The code in Listing 3 also ensures that the value of the eighth gene cannot go negative. The idea

of instantiating a Biomorph where the number of stages is negative doesn't make any sense.

The first seven gene values

This is where things get somewhat complicated. In order for you to understand the remaining

code in the constructor, I need to explain the meaning of the first seven values in the array of

genes. For that, I will turn to a discussion of the physical drawing process for the Biomorph.

Branching off in different directions

Consider the rightmost Biomorph in the top row of Figure 1 as an example. When the time

comes for a stem to bifurcate into two new stems, they branch off in different and somewhat

opposite directions.

Eight possible directions

A new stem can branch off in any one of eight different directions. Two of the eight directions

are horizontal to the right or to the left. Two of the directions are vertical, either up or

down. That takes care of four of the eight possible directions.

The other four directions are generally neither horizontal nor vertical. Considering the first four

directions as representing north, south, east, and west, the other four directions are generally

northeast, northwest, southeast, and southwest. I say generally because these directions are not

fixed like points on the compass. For example, a stem that branches off in a northeasterly

direction can be horizontal, vertical, or anything in between. In other words, the actual direction

of a stem that branches off in a northeasterly direction can be any direction in the ninety degrees

between pure north and pure east.

Genes determine the direction of a new stem

The combined values of a subset of the first seven genes determine the directions that the two

new stems take when the old stem bifurcates.

For brevity in the following discussion, I will use the following notation to represent each of the

first seven values in the gene array: g0, g1, g2, g3, g4, g5, and g6.

Defined by two pairs of coordinates

As you will see when we examine the code later, each new stem is defined by two pairs of

coordinates. One pair of coordinates represents the starting point of a straight line, which is the

same as the point in two-dimensional space where the old stem bifurcates.

The second pair of coordinates represents the other end of the stem in the same two-dimensional

space.

Compute second pair of coordinate values

The location of the other end of the stem is computed by selecting a pair of values from the gene

array and scaling those values.

(In some cases, one of the coordinate values is zero, in which case it isn't

necessary to select a value from the gene array.)

The first seven values in the gene array are used to determine the end points of every stem.

Relationship between gene values and coordinate values

Figure 3 shows my attempt to represent this relationship in visual form. (As you can see, I am

not a graphics artist.)

Figure 3 Eight possible stem directions

Figure 3 shows each of the eight possible directions in which a stem can be drawn. Those eight

directions are numbered from 0 through 7, starting at the top and going in a clockwise direction.

Figure 3 also shows how values from the gene array are used to specify the end point of a stem to

be drawn in any of those eight possible directions.

(For example, the end point of a stem in direction 1 is determined by applying a

scale factor to values in the gene array represented by g1 and g2. You will see

that this is genes[1] and genes[2].)

Horizontal and vertical stems

As you can see, the gene values of g0, g3, g6 and -g3 produce horizontal and vertical stems of

different lengths along directions 0, 2, 4, and 6.

Note that the same absolute value from the gene array, g3, is used to specify the end of a stem

going in either direction along the horizontal axis (direction 2 and direction 6). Only the

algebraic sign of the value differs.

Also note that the same absolute values from the gene array, g1, and g2, are used to specify the

end of a stem drawn in either direction 1 or direction 7. Again, only the algebraic sign applied to

the value of g1 differs between the two directions.

Finally, note that the same absolute values from the gene array, g4, and g5, are used to specify

the end of a stem drawn in either direction 3 or direction 5. In this case, a negative sign is

applied to g5 for both directions 3 and 5. A negative sign is applied to g4 for direction 5.

Horizontal symmetry

The result is that all Biomorphs are horizontally symmetrical, as shown in Figure 1 and Figure 2.

Only seven different gene values are required

A close examination of Figure 3 shows that only seven different gene values are required to

specify the end point of any stem regardless of its direction.

As the genes mutate and change values, the lengths of horizontal and vertical stems constructed

using those gene values also change.

Both the length and the angle relative to the horizontal changes for stems drawn along directions

1, 3, 5, and 7 as the genes mutate and change values.

Effect of changes in gene values

The effect of changes in gene values on the shape of the Biomorphs is illustrated in Figure

4. This figure shows the generation and display of Biomorphs through a controlled set of

changes to the values in the gene array.

Figure 4 Biomorphs with controlled changes to the genes.

The baseline Biomorph

The top left-most Biomorph in Figure 4 was generated using a gene array with all ones in the

first seven genes and a five in the eighth gene. Thus, it is a five-stage Biomorph.

Changes in the gene values

The next seven Biomorphs, beginning with the Biomorph in the center of the top row, were

generated by multiplying one, and only one of the genes by a factor of three, starting with the

first gene and ending with the seventh gene.

(The ninth Biomorph was a duplicate of the eighth Biomorph, and was included

only to balance out the display.)

Correlate pictures with gene values

You should be able to correlate the shapes of the Biomorphs in Figure 4 with the information in

Figure 3. This should help you to understand why the Biomorphs in Figure 4 look the way that

they do.

Increasing the value of the first gene

For example, when the value of the first gene was multiplied by a factor of three, this had the

effect of increasing the value of g0 at the top of Figure 3, thus elongating the Biomorph in the

vertical direction. (See the center Biomorph in the top row of Figure 4.)

Increasing the value of the second gene

When the second gene was multiplied by a factor of three, this had the effect of increasing the

value of g1 without increasing the value of g2 in Figure 3. This tended to stretch the Biomorph

horizontally for those stems that had a northeasterly and northwesterly direction. (See the right-

most Biomorph in the first row in Figure 4.)

(For the record, Figure 4 was produced by an unpublished program named

Biomorph01x1. I mention this here just in case I need to go back and retrieve the

program later.)

Back to the code

With that as background information, it is now time to return to an explanation of the code in the

constructor for the Biomorph class.

Recall that the shorthand notation g0, g1, g2, etc., in Figure 3 actually represents values in the

gene array given by genes[0], genes[1], genes[2], etc.

Create and populate two arrays

The code in Listing 4 populates two arrays referred to by xInc and yInc on the basis of the

values stored in the gene array named genes.

The values in the new array referred to by xInc represent the horizontal components of the outer

ends of the eight lines shown in Figure 3.

The values in the new array referred to by yInc represent the vertical components of the outer

ends of the eight lines shown in Figure 3.

The coordinates of the ends of the lines

Taken together, the sixteen values in the two new arrays specify the coordinates of the outer ends

of each of the eight lines shown in Figure 3.

 xInc[0] = 0;

 yInc[0] =

this.genes[0];

 xInc[1] = this.genes[1];

 yInc[1] =

this.genes[2];

 xInc[2] = this.genes[3];

 yInc[2] = 0;

 xInc[3] = this.genes[4];

 yInc[3] = -

this.genes[5];

 xInc[4] = 0;

 yInc[4] = -

this.genes[6];

 xInc[5] = -this.genes[4];

 yInc[5] = -

this.genes[5];

 xInc[6] = -this.genes[3];

 yInc[6] = 0;

 xInc[7] = -this.genes[1];

 yInc[7] =

this.genes[2];

Listing 4

Array indices match direction numbers

The values stored at index 0 in the two new arrays specify the end of the line along direction 0 in

Figure 3.

Similarly, each of the direction numbers in Figure 3 matches a corresponding index value in the

two new arrays.

The coordinate values stored in the two new arrays will be used later, along with a multiplicative

scale factor, to compute the coordinates of the end points of new stems in the Biomorph object.

The lengths of the stems

A careful examination of Figure 1 reveals that the length of each new pair of stems is shorter

than the length of the stem that spawned them. Listing 5 shows the end of the constructor for the

Biomorph class.

 length = this.genes[7];

 }//end constructor

Listing 5

The code in Listing 5 establishes the length of the first stem belonging to the Biomorph.

This initial line length is based on the number of stages to be drawn in the construction of the

Biomorph. You will see later that the length of each new stem is reduced by a value of one

relative to the length of the stem that spawned it. The algorithm terminates when the length of

the stem reaches zero.

(The algorithm actually terminates after the last stem of length is one is

drawn. There is no point in attempting to draw a stem with zero length.)

The getGenes method

As I mentioned earlier, a Biomorph has the ability to return a reference to its (potentially

mutated) gene array.

 double[] getGenes(){

 return this.genes;

 }//end getGenes

Listing 6

The method to accomplish this is very simple, and is shown in Listing 6. I wanted to get that out

of the way before getting into the more complex topic of the overridden paint method.

The overridden paint method

Screen graphics are created in Java by overriding the method named paint. When time comes to

redraw the screen, the Java virtual machine, in conjunction with the operating system causes the

overridden paint method to be invoked. The code written into the overridden paint method

determines what gets drawn.

The overridden paint method is shown in Listing 7.

 public void paint(Graphics g){

 g.translate(xOrigin,yOrigin);

drawIt(g,xCoor,yCoor,length,direction,xInc,

yInc,scale);

 }//end paint()

Listing 7

The method appears to be very simple, but looks can be deceiving.

Adjust the plotting origin

The overridden paint method starts out simple enough. Recall that a Biomorph is an object that

extends the class named Panel. Thus, the code in Listing 7 overrides the paint method inherited

from the Panel class.

By default, all coordinate values in Java are relative to the upper left-most corner of the

component in which the coordinates are being determined. In other words, the plotting origin for

a Panel object is the upper left-most corner of the panel.

The first statement in Listing 7 translates the plotting origin to a point near the center of the

panel. You will see later that the actual coordinate values of the new origin are based on the

overall size of the GUI and the number of panels placed in the GUI.

Invoke the drawIt method

It is the second statement in Listing 7 that is deceivingly simple. This statement invokes the

method named drawIt to cause the new Biomorph to be drawn on the screen. Some of you may

find the drawIt method to be somewhat complex.

Recursion

If you are skilled in the use of recursion, you will probably find the drawIt method to be

relatively straightforward. However, the method is invoked recursively to draw the Biomorph,

and those of you who are not skilled in the use of recursion may find it more difficult.

The Graphics object

The paint method always receives a reference to an object of the Graphics class. As a practical

matter, you can think of this object as representing the screen on which you are going to draw a

picture. When you draw a picture on the Graphics object, it appears on the portion of the screen

that belongs to your Java application.

As you can see in Listing 7, the reference to the Graphics object is passed as the first parameter

to the drawIt method, giving that method the capability to draw pictures on the computer screen.

The drawIt method

The signature for the drawIt method is shown in Listing 8. As mentioned above, the first

parameter is a reference to a Graphics object that gives the method the ability to draw pictures

on the computer screen.

 void drawIt(Graphics g,

 double oldX,

 double oldY,

 double len,

 int newDir,

 double[] xInc,

 double[] yInc,

 double scale){

Listing 8

The oldX and oldY parameters

The Biomorph is actually constructed while it is being drawn in the drawIt method. The

construction of the Biomorph consists of the definition of the end points of the stems that make

up the Biomorph. Each of those stems is a straight line segment.

The drawIt method is invoked recursively to draw each stem.

The parameters named oldX and oldY specify the coordinates of the starting point of the

stem. After the first call to the drawIt method, each recursive call to the method passes the

coordinates of the end point of the current stem in these two parameters. That causes the end of

one stem to become the starting point for the two stems spawned by that stem.

The length and direction of the line segment

As mentioned earlier, the length of the line that represents each new stem is reduced by one

relative to the length of the stem that spawned it through the bifurcation process. Also, as

mentioned earlier, each stem in the pair of new stems spawned in the bifurcation process go off

in generally opposite directions.

The fourth and fifth parameters in the drawIt method signature contain the length and direction

of the new stem.

The direction is specified as an integer according to the direction numbers shown in Figure 3.

The end-point arrays

The sixth and seventh parameters are references to objects that encapsulate the arrays containing

the end points for lines in each of the eight possible directions.

Recall that the coordinate values stored in these two array objects were computed by the code in

Listing 4 based on the values stored in the gene array. Like the gene values, the end-point values

do not change during the recursive construction of a Biomorph.

The scale factor

The last parameter shown in Listing 8 is a scale factor that is applied to the drawing in an attempt

to cause the size of the drawing to fit within its allocated space. The overall size of a Biomorph

tends to increase as more stages are used to construct it. Stated differently, the overall size tends

to increase as more and more stems are added.

As you will see later, the programs in this lesson cause the scale factor to increase as the number

of stages increase. The reciprocal of the scale factor is used to scale the overall size of the

drawing. This is an attempt to cause the size of the Biomorph to be appropriate for the allocated

space regardless of the number of stages used in its construction.

Constraining the direction values

The new direction value passed to the drawIt method is computed by adding a positive or

negative integer to the direction value for the stem that spawned it. Left unchecked, this could

result in negative direction values, or direction values that exceed the allowable positive limit of

7.

The code in Listing 9 constrains the direction value to the range from 0 through 7

inclusive. Hopefully you understand enough about fundamental Java programming that the code

in Listing 9 won't be a mystery.

 newDir = (newDir + 8)%8;

Listing 9

Compute end points of the new stem

The code in Listing 10 computes the coordinates of the end point of the new stem.

 double newX = oldX + len *

xInc[newDir];

 double newY = oldY + len *

yInc[newDir];

Listing 10

The stem is drawn as a straight line segment that begins at the coordinates given by the

parameters oldX and oldY, and ends at the coordinates computed in Listing 10.

The genes determine the shape of the Biomorph

The values of the new coordinates are the product of the length of the new stem (received as an

incoming parameter), and the coordinate values stored in the two arrays discussed earlier.

The value of the new direction is used as an index to retrieve the coordinate values from the two

arrays. Since the coordinate values in the two arrays was computed earlier on the basis of the

values of the genes, the values of the genes and the length of the stem determine the coordinates

of the end of the new stem. This explains how the values of the genes ultimately determine the

shape of the Biomorph, one stem at a time.

Draw the current stem

The code in Listing 11 invokes the drawLine method of the Graphics class to actually draw the

stem on the computer screen. If you are unfamiliar with this method, you can look it up in the

Sun documentation.

 g.drawLine((int)(oldX/scale),

 (int)(-oldY/scale),

 (int)(newX/scale),

 (int)(-newY/scale));

Listing 11

Correct for vertical direction

By default, positive vertical values are drawn going down the screen. This is backwards to what

most of us are comfortable with in a Cartesian coordinate system where positive vertical values

normally go up.

The minus signs in Listing 11 correct for this situation causing positive vertical values to be

drawn going up the screen.

Make a recursive call to the drawIt method

Having drawn one stem, it is time to make two recursive calls to the drawIt method to

implement the bifurcation process and to cause the two stems that result from that process to be

drawn. This is accomplished by the code in Listing 12.

 if(len > 1){

 drawIt(g,newX,newY,len-

1,newDir+1,xInc,

yInc,scale);

 drawIt(g,newX,newY,len-1,newDir-

1,xInc,

yInc,scale);

 }//end if

 }//end drawIt

Listing 12

The length of the new stem

Each time a recursive call is made to the drawIt method, the length of the stem to be drawn is

reduced by one. The code in Listing 12 causes the stems to continue bifurcating and drawing

new stems for as long as the current length is greater than 1.

When the length of the current stem reaches 1, the drawIt method returns without bifurcating

and drawing any more new stems.

(It wouldn't make any sense to try to draw a stem whose length is zero.)

That is what terminates the recursion process.

The starting point for the new stem

Note that the coordinates of the end point for the current stem are passed to the drawIt method

where they become the coordinates for the starting point of the new stem.

The directions of the new stems

The only difference between the two recursive calls to the drawIt method in Listing 12 has to do

with the direction parameter. For the first call to the drawIt method, the new direction is

increased by one relative to the current direction. For the second call to the drawIt method, the

new direction is decreased by one relative to the current direction.

Referring back to Figure 3, for example, we see that if the direction number for the current stem

is 2, the direction number for one of the new stems will be 3 and the direction number for the

other new stem will be 1.

Similarly, referring both to Figure 3 and Listing 9, we see that if the direction number for the

current stem is 0, the direction number for one of the new stems will be 2 and the direction

number for the other new stem will be 7.

Recursive behavior

A complete explanation of recursive behavior is beyond the scope of this lesson. However, it

might be useful to provide a visual illustration of recursion.

The recursive behavior provided by Listing 12 is quite complex due to the fact that two

successive statements make recursive calls to the drawIt method. That behavior can be greatly

simplified by modifying the code in Listing 12 to that shown in Listing 13.

 if(len > 1){

 drawIt(g,newX,newY,len-

1,newDir+1,xInc,

yInc,scale);

/*

 drawIt(g,newX,newY,len-1,newDir-

1,xInc,

yInc,scale);

*/

 }//end if

 }//end drawIt

Listing 13

The second recursive call to the drawIt method has been disabled in Listing 13 by turning it into

a comment.

The simplified output

When the program that produced the output shown in Figure 1 is modified in the manner shown

in Listing 13 and then rerun, the new simplified output is as shown in Figure 5.

Figure 5 Nine stages in the growth of a simplified Biomorph

Compare Figure 5 with Figure 1

If you compare Figure 5 with Figure 1, you will see that the output in each of the nine drawing

areas consists only of the successive recursively generated stems for which the new direction

value is one greater than the old direction value.

You will also see that each stem is shorter than the one that spawned it, and recursion terminates

when the length of the current stem reaches a value of one.

(Recall that the overall plotting scale factor applied to the drawing in the upper

left-most position is greater than the scale factor applied to the drawing in the

lower right-most position. Thus a stem length of one unit in the upper left-most

position is longer than a stem length of one unit in the lower right-most position.)

End of the Biomorph class

The code in Listing 12 signals the end of the class named Biomorph, from which our Biomorph

objects are instantiated.

Now that you understand the Biomorph class, you should have little trouble understanding the

three programs shown in Listing 31, Listing 32, and Listing 33 near the end of the lesson. All

three of the programs use the Biomorph class to create Biomorph objects. The difference in the

three programs lies in how they manage the Biomorph objects.

The program named Biomorph01

As usual, I will explain all three of the programs in fragments. A complete listing of the program

named Biomorph01 is presented in Listing 31 near the end of the lesson.

The purpose of the program named Biomorph01 is to compute and display the first nine stages

of growth for a Biomorph based on a simple gene set where each of the seven genes that control

the shape of the Biomorph have a fixed value of 1.

The program begins in Listing 14, which declares and initializes two static member

variables. The variables are declared static to make it possible to refer to them from the static

main method.

public class Biomorph01{

 static double[] genes = new

double[8];

 static Random rGen =

 new Random(new

Date().getTime());

Listing 14

The first member variable is used later to store the eight genes required by the Biomorph

class. As you learned earlier, the first seven genes control the shape of the Biomorph, while the

eighth gene controls the number of bifurcating stages used to construct the Biomorph.

The second member variable provides a random number generator. As you learned earlier, this

random number generator is required by the Biomorph class. However, it isn't actually used by

this program.

The main method

The main method is shown in its entirety in Listing 15.

 public static void main(String[]

args){

 for(int cnt = 0; cnt < 7; cnt++){

 genes[cnt]=1;

 }//end for

 genes[7] = 1;

 new GUI(genes,rGen);

 }//end main

Listing 15

The code in the main method performs the following tasks:

 Populate the gene array with seven fixed gene values of 1.

 Specify the number of stages used to construct the first Biomorph.

 Instantiate an object of the GUI class that will take care of the remaining tasks.

This is all relatively straightforward and shouldn't require further explanation.

Listing 15 also signals the end of the class named Biomorph01.

The class named GUI

This class is used to instantiate a graphical user interface object that causes the first nine stages

of a simple Biomorph to be created and displayed in nine grid cells in a Frame object. Figure 1

shows the output produced by this class.

The beginning of the GUI class is shown in Listing 16.

class GUI extends Frame{

 Random rGen;

 double[] genes;

Listing 16

Listing 16 declares instance variables used to store references to the gene array object and the

random number generator object.

The GUI constructor

The constructor for the GUI class begins in Listing 17.

 public GUI(double[] genes,Random

rGen){

 this.rGen = rGen;

 this.genes = genes;

Listing 17

The code in Listing 17 saves the incoming parameters in the instance variables declared in

Listing 16.

Set the layout manager

Listing 18 replaces the default layout manager for the Frame object with a layout manager that

subdivides the frame into nine grid cells of equal size.

 setLayout(new GridLayout(3,3));

Listing 18

See Figure 1 for an example of the new layout.

Create and display nine Biomorphs

Listing 19 shows the beginning of a for loop that creates and displays the nine stages of growth

for a Biomorph using the same genes for each stage.

 for(int cnt = 0; cnt < 9; cnt++){

 Biomorph biomorph =

 new

Biomorph(genes,

rGen,

 -

1,

genes[7]/8,

66,

66);

Listing 19

(Actually, the for loop creates and displays nine different Biomorphs, with each

successive Biomorph being constructed with one more stage than the previous

Biomorph.)

You already know all about the Biomorph class, so the only discussion that should be needed is

a discussion of the parameters to the Biomorph constructor.

Biomorph constructor parameters

The first two parameters pass the gene array and the random number generator to the Biomorph

constructor.

The third parameter value of -1 causes the value of cnt to be out of range so that the code in the

body of the if statement in Listing 3 is not executed. As a result, no mutation of the genes takes

place.

The scale factor, which is passed as the fourth parameter, is proportional to the number of stages

used to construct the Biomorph. As described earlier, this is an attempt to cause each individual

Biomorph shown in Figure 1 to be appropriate for the allocated drawing area for that Biomorph.

Finally, the last two parameters cause the plotting origin to be placed in the center of the

allocated drawing area for each Biomorph.

Setting the background colors

An object of the class Panel doesn't have a border of any kind. Therefore, when two or more

Panel object are drawn adjacent to one another, it isn't possible to tell where on ends and the

other begins unless something is done to cause the boundary between the two to be visible.

As shown in Figure 1, the code in Listing 20 causes the background colors of adjacent

Biomorphs to alternate between yellow and green. This makes it easy to recognize the boundary

between two Biomorphs.

 if(cnt%2 == 0){

biomorph.setBackground(Color.YELLOW);

 }else{

biomorph.setBackground(Color.GREEN);

 }//end else

Listing 20

Add the new Biomorph to the Frame

Recall that we are still discussing the body of the for loop that began in Listing 19. The code in

Listing 21 adds the new Biomorph that was constructed in Listing 19 to the next grid cell on the

frame.

 this.add(biomorph);

Listing 21

Increase the number of stages

Listing 22 increments the eighth gene in the gene array. This causes the number of stages that

will be used to construct the next Biomorph to be one greater than the number of stages that were

used to construct the current Biomorph.

 genes[7] += 1;

 }//end for loop

Listing 22

Listing 22 also signals the end of the for loop that began in Listing 19.

Complete the GUI class definition

Listing 23 shows the remaining code in the definition of the class named GUI. This code is

completely straightforward and shouldn't require an explanation. It is included here only for

completeness.

 setTitle("Copyright 2004,

R.G.Baldwin");

 setSize(400,400);

 setVisible(true);

 //Instantiate and register a

Listener object

 // that will terminate the program

when the

 // user closes the Frame

 addWindowListener(

 new WindowAdapter(){

 public void

windowClosing(WindowEvent e){

 System.exit(0);

 }//end windowClosing

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

}//end class GUI definition

Listing 23

The program named Biomorph02

Listing 32 near the end of the lesson presents a complete listing of the program named

Biomorph02.

The purpose of this program is to compute and display the first nine stages of growth for a

Biomorph based on a complex gene set where each of the seven genes that control the shape of

the

Biomorph are obtained from a random number generator.

This program should produce Biomorph objects having different appearances each time it is run.

The main method

The main method for this program is shown in Listing 24.

 public static void main(String[]

args){

 for(int cnt = 0; cnt < 7; cnt++){

 genes[cnt] = rGen.nextInt(7)-3;

 }//end for

 genes[7] = 1;

 new GUI(genes,rGen);

 }//end main

Listing 24

The only real difference between this program and the program named Biomorph01 is the code

in the main method that is highlighted in red boldface in Listing 24.

Recall that the first seven gene values in the program named Biomorph01 had a value of 1. This

program, on the other hand, uses a random number generator to create those seven gene

values. The purpose is to illustrate the variety of ways that the Biomorphs differ when the gene

values differ. To see those differences, simply compile this program and run it several times in

succession. Each time you run it, you should see a different set of Biomorphs.

Sample outputs

Three sample outputs from this program are shown in Figure 6, Figure 7, and Figure 8.

Figure 6 Biomorphs based on random gene values

I don't know what you think, but the Biomorph in Figure 6 looks remarkably like an eagle to me.

Figure 7 Biomorphs based on random gene values

The Biomorph in Figure 7 reminds me of a "daddy longlegs" spider hanging from a single strand

of its web.

Figure 8 Biomorphs based on random gene values

The Biomorph in Figure 8 makes me think of looking across a pond and seeing the reflection of

trees or buildings in the pond.

No artificial selection was involved

No artificial selection was involved in these three samples. These images were produced simply

by setting the gene values at random and using that gene set to produce the Biomorph. I will get

into artificial selection in the next section.

The program named Biomorph03

This is the program that provides the artificial selection capability described in the Preview

section of this lesson.

The behavior of the program has been described in general terms in previous sections of this

lesson. To use artificial selection to breed a Biomorph having desirable characteristics, simply

run the program and select the Biomorph that you consider to be "best" with the mouse. That

Biomorph will become the parent of the next generation of Biomorphs. The parent will appear

in the lower left-most cell in the display and the siblings in the new generation will occupy the

other eight cells.

Repeat that process until you have bred a generation of Biomorphs that match your desired

characteristics.

Some results

I will explain the inner workings of the program in the remainder of this lesson.

Before getting into the technical details, let's take a look at some results, as shown in Figure 9

and Figure 10.

Figure 9 Starting point for artificial selection process

Figure 10 Stealth aircraft produced through artificial selection

The starting point

The bottom right-most Biomorph in Figure 9 is the original parent Biomorph provided by this

program. The other eight Biomorphs shown in Figure 9 are the eight offspring that constitute the

first new generation. Each of the offspring differs from the parent in terms of the value of one

gene. Each of the offspring has a mutated value in a different gene, so no two offspring are

exactly alike.

As you can see, some of the offspring strongly resemble the parent, while others have little

resemblance to the parent. It all depends on which gene was mutated.

Several generations later

Figure 10 shows a parent and eight offspring produced about nine or ten generations later.

After a couple of clicks, I noticed something developing that looked a little like a stealth

aircraft. I decided to emphasize that characteristic, and after a few more clicks, the Biomorphs

that you see in Figure 10 had evolved. If you use your imagination, most of the Biomorphs in

Figure 10 look something like a stealth aircraft.

Will discuss in fragments

I will discuss the program named Biomorph03 in fragments. A complete listing of the program

is shown in Listing 33 near the end of the lesson.

Much of the code in this program is very similar to code in one or the other of the two programs

discussed earlier in this lesson. I won't repeat a discussion of that code, but rather will

emphasize the differences between this program and two previous programs.

A mouse listener

The Biomorph03 class begins in Listing 25.

public class Biomorph03 implements

MouseListener{

 static double[] genes = new

double[8];

 static GUI gui;

 static MouseListener listener;

 static Random rGen = new Random(

 new

Date().getTime());

Listing 25

The most significant new thing in Listing 25 is the fact that this class implements the

MouseListener interface. Thus, an object instantiated from this class can be registered on any

component capable of firing mouse events, (which includes objects of the Biomorph class).

In addition to implementing the MouseListener interface, the code in Listing 25 also declares a

static member variable of type MouseListener.

The main method

The main method begins in Listing 26. The code in Listing 26 instantiates an object of the

Biomorph03 class and saves its reference as type MouseListener.

 public static void main(String[]

args){

 listener = new Biomorph03();

 //Create initial set of genes.

 for(int cnt = 0; cnt < 7; cnt++){

 genes[cnt] = 1.0;

 }//end for

Listing 26

Later on, this MouseListener object will be registered on each of the Biomorph objects. This

will make it possible for the user to use the mouse to select one of the nine Biomorphs to serve as

the parent Biomorph for the next generation.

Initial gene set

As was the case in the program named Biomorph01, this program causes the first seven genes to

have an initial value of 1.0. Thus, the starting set of genes for this program is always the same.

(You may also find it interesting to modify this program to use a set of seven

random values for the initial set of genes. You can lift that code from the

program named Biomorph02.)

A five-stage Biomorph

The value stored in the eighth gene specifies the number of stages that will be used to construct

the Biomorph. The code in Listing 27 sets the initial value of this gene to 5.

 genes[7] = 5;

 gui = new

GUI(genes,listener,rGen);

 }//end main

Listing 27

Recall, however, that this value can increase or decrease due to mutation of the genes. If this

value goes to zero, the Biomorph created using that gene set will disappear. As you learned

earlier, the value of the eighth gene is not allowed to go negative.

A new GUI object

The code in Listing 27 also instantiates a new GUI object. The major difference is that this

version passes the MouseListener object's reference to the constructor for the GUI object.

Listing 27 also signals the end of the main method.

The MouseListener methods

Because this class implements the MouseListener interface, it must provide concrete definitions

of the five methods declared in the interface. One of those methods is named mouseClicked.

The definition of the mouseClicked method is shown in Listing 28. The purpose of this method

is to make it possible for the user to select one of the nine Biomorphs to become the parent for

the next generation of Biomorphs.

 public void mouseClicked(MouseEvent

e){

 Biomorph theMorph =

(Biomorph)(e.getSource());

 genes = theMorph.getGenes();

 gui.dispose();

 gui = new

GUI(genes,listener,rGen);

 }//end mouseClicked

Listing 28

Behavior of the mouseClicked method

The mouseClicked method does the following:

 Identify the specific Biomorph object that was selected with the mouse.

 Get and save the mutated gene array belonging to that Biomorph object. This will be the

gene array belonging to the parent of the next generation. Each offspring Biomorph in

the next generation will have these genes except that each offspring will mutate one gene

in the array.

 Dispose of the existing GUI object in preparation for creating a new one that displays the

parent and eight offspring in the next generation of Biomorphs.

 Instantiate a new GUI object based on the gene array belonging to the Biomorph that was

selected.

The remaining MouseListener methods

Listing 29 defines the remaining four methods declared in the MouseListener interface as empty

methods.

 public void mousePressed(MouseEvent

e){};

 public void mouseReleased(MouseEvent

e){};

 public void mouseEntered(MouseEvent

e){};

 public void mouseExited(MouseEvent

e){};

}//end class Biomorph03

Listing 29

Listing 29 also signals the end of the definition of class named Biomorph03.

The GUI class

The entire definition for the GUI class is shown in Listing 30. This class is used to instantiate a

graphical user interface object that displays nine Biomorphs in a 3x3 grid. A MouseListener is

registered on each Biomorph as it is added to the graphical user interface.

class GUI extends Frame{

 Random rGen;

 Biomorph[] morphs = new Biomorph[9];

 double[] genes;

 //Constructor

 public GUI(double[] genes,

 MouseListener listener,

 Random rGen){

 //Save incoming parameters.

 this.rGen = rGen;

 this.genes = genes;

 //Subdivide the GUI into nine grid

cells of

 // equal size.

 setLayout(new GridLayout(3,3));

 //Instantiate nine Biomorph objects.

Add

 // them to the GUI. They are placed

in the

 // grid cells in the GUI from left

to right,

 // top to bottom.

 //Register a mouse listener on each

Biomorph

 // object. Set the background color

for each

 // Biomorph object to produce

alternating

 // green and yellow backgrounds.

 for(int cnt = 0; cnt < 9; cnt++){

 //Instantiate and save a new

Biomorph

 // object. Set the origin to be

the center

 // of the grid cell.

 morphs[cnt] = new Biomorph(genes,

 rGen,

 cnt,

genes[7]/8,

 66,

 66);

 //Add this Biomorph object to the

Frame in

 // the next grid cell.

 this.add(morphs[cnt]);

 //Register a mouse listener on the

Biomorph

 // object.

morphs[cnt].addMouseListener(listener);

 //Cause the background colors of

the

 // Biomorph objects to alternate

between

 // yellow and green so that they

will be

 // visually separable in the

Frame.

 if(cnt%2 == 0){

morphs[cnt].setBackground(Color.YELLOW);

 }else{

morphs[cnt].setBackground(Color.GREEN);

 }//end else

 }//end for loop

 //Finish the GUI and make it

visible.

 setTitle("Copyright 2004,

R.G.Baldwin");

 setSize(400,400);

 setVisible(true);

 //Instantiate and register a

Listener object

 // that will terminate the program

when the

 // user closes the Frame

 addWindowListener(

 new WindowAdapter(){

 public void

windowClosing(WindowEvent e){

 System.exit(0);

 }//end windowClosing

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

}//end class GUI definition

Listing 30

Registering the MouseListener

About the only thing that causes this GUI class to be different from the classes with the same

name in the previous two programs is the registration of the MouseListener object on each

Biomorph object as it is added to the frame. I highlighted that statement in red boldface so that

it will be easy for you to find.

Run the Programs

I encourage you to copy the code from the program listings near the end of this lesson. Compile

and run the programs. Experiment with them, improving them as you see fit.

Above all, have fun.

Summary

I showed you how to write programs that model the selective breeding process, sometimes

referred to as artificial selection. This is as opposed to natural selection, sometimes referred to

as survival of the fittest.

Whether or not you found these programs to be useful, I hope you found them to be

fun. Hopefully you also learned a few new things about Java programming based on the way

that these programs are written.

Complete Program Listings

Complete listings of the three programs explained in this lesson are provided in Listing 31,

Listing 32, and Listing 33 below.

/*File Biomorph01.java Copyright 2004,R.G.Baldwin

Revised 4/8/04

The purpose of this program is to compute and

display the first nine stages of growth for a

Biomorph based on a simple gene set where each of

the seven genes that control the shape of the

Biomorph have a fixed value of 1.

This program is loosely based on material in

Chapter 8 of the book entitled Windows Hothouse

by Mark Clarkson. However, it was necessary for

me to find and fix several typographical errors

in the C++ algorithm presented in that book.

Tested using J2SE 1.4.2 under WinXP.

**/

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class Biomorph01{

 //Store the genes here. The first seven genes

 // control the shape of the Biomorph. The

 // eighth gene specifies the number of stages

 // used to construct the Biomorph.

 static double[] genes = new double[8];

 //This random number generator is required by

 // the Biomorph constructor, but isn't used for

 // any purpose in this program.

 static Random rGen =

 new Random(new Date().getTime());

 public static void main(String[] args){

 //Create 7 fixed gene values.

 for(int cnt = 0; cnt < 7; cnt++){

 genes[cnt]=1;

 }//end for

 //Specify the number of stages in the first

 // Biomorph object.

 genes[7] = 1;

 //Instantiate the GUI

 new GUI(genes,rGen);

 }//end main

}//end class Biomorph01

//===//

//The following class is used to instantiate a

// graphical user interface object that causes

// the first nine stages of a Biomorph object to

// be created and displayed in nine grid cells in

// a Frame object.

class GUI extends Frame{

 Random rGen;

 double[] genes;

 //Constructor

 public GUI(double[] genes,Random rGen){

 //Save incoming parameters in local

 // variables.

 this.rGen = rGen;

 this.genes = genes;

 //Subdivide the Frame into nine grid cells.

 setLayout(new GridLayout(3,3));

 //Create and display nine stages of growth

 // for a Biomorph object using the same genes

 // for each stage. Specify the third

 // parameter value to be negative to prevent

 // the Biomorph constructor from mutating the

 // genes.

 for(int cnt = 0; cnt < 9; cnt++){

 Biomorph biomorph =

 new Biomorph(genes,

 rGen,

 -1,

 genes[7]/8,

 66,

 66);

 //Cause the background colors of the

 // Biomorph objects to alternate between

 // yellow and green so that they will be

 // visually separable in the Frame.

 if(cnt%2 == 0){

 biomorph.setBackground(Color.YELLOW);

 }else{

 biomorph.setBackground(Color.GREEN);

 }//end else

 //Add the Biomorph object to the Frame in

 // the next grid cell.

 this.add(biomorph);

 //Increase the number of stages for the

 // next Biomorph object.

 genes[7] += 1;

 }//end for loop

 setTitle("Copyright 2004, R.G.Baldwin");

 setSize(400,400);

 setVisible(true);

 //Instantiate and register a Listener object

 // that will terminate the program when the

 // user closes the Frame

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }//end windowClosing

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

}//end class GUI definition

//===//

//This class is used to instantiate a Biomorph

// object. It is based loosely on Chapter 8 of

// the book entitled Windows Hothouse by Mark

// Clarkson. However, the C++ algorithm

// presented in that book contains several

// serious typographical errors. It was

// necessary for me to find and fix those errors

// when writing a Java version of the algorithm.

//The constructor receives an array of eight gene

// values. The final value in the array specifies

// the number of stages to be used to construct

// the Biomorph object. The first stage produces

// a single stem. Each successive stage causes

// all existing stems to bifurcate into two new

// stems. Thus, the number of stems increases as

// a power of two based on the number of stages.

// For example, a Biomorph created with two

// stages contains three stems. A three-stage

// Biomorph contains seven stems, a four-stage

// Biomorph contains fifteen stems, etc.

//When writing the Java version of the algorithm,

// I elected to maintain all of the data as type

// double in order to preserve arithmetic

// accuracy. Values are converted from double to

// int at the very last step before displaying

// the Biomorph on the screen.

//The constructor receives a random number

// generator and a count value that are used to

// mutate a gene in the array of genes by a

// random value of plus or minus one whenever the

// count value is within the range from 0 to 7.

// If the count value is outside this range,

// there is no gene mutation.

//A method named getGenes returns the gene array

// containing the possibly mutated gene. This is

// useful for experiments in selective breeding.

//The constructor receives a scale factor that is

// used to adjust the overall size of the plot to

// cause it to fit in the allocated plotting

// area. Generally speaking, the size of the raw

// display of the Biomorph object would increase

// as the number of stages increases. Therefore,

// it is useful to cause the scale factor to vary

// inversely with the number of stages.

//The constructor receives a pair of int values

// that are used to move the plotting origin

// from the default upper-left corner to another

// location in the plotting area.

//The direction of the first stem displayed for

// the Biomorph object is hard-coded to be

// vertical going up the screen, starting at the

// origin.

class Biomorph extends Panel{

 double[] xInc = new double[8];

 double[] yInc = new double[8];

 double[] genes;

 double xCoor = 0;//Start drawing here

 double yCoor = 0;//Start drawing here

 int direction = 0;//Initial drawing direction

 double length;

 double scale;

 int xOrigin;

 int yOrigin;

 //Constructor

 Biomorph(double[] genes,Random rGen,int cnt,

 double scale,int xOrigin,int yOrigin){

 //Save local copies of incoming parameters.

 this.genes = (double[])genes.clone();

 this.scale = scale;

 this.xOrigin = xOrigin;

 this.yOrigin = yOrigin;

 //Mutate gene at position cnt unless cnt is

 // out of the range from 0 through 7

 // inclusive.

 if((cnt>=0) && (cnt<=7)){

 double mutantValue = rGen.nextInt(2)*2-1;

 this.genes[cnt] += mutantValue;

 //Don't allow the eighth gene to go

 // negative

 if(this.genes[7] < 0)this.genes[7] = 0;

 }//end if

 //Compute incremental ends of lines based on

 // gene values. Note that the C++ algorithm

 // presented in the Clarkson book appears to

 // contain several errors at this point.

 // Either that, or perhaps I don't fully

 // understand his version of the algorithm.

 xInc[0] = 0;

 yInc[0] = this.genes[0];

 xInc[1] = this.genes[1];

 yInc[1] = this.genes[2];

 xInc[2] = this.genes[3];

 yInc[2] = 0;

 xInc[3] = this.genes[4];

 yInc[3] = -this.genes[5];

 xInc[4] = 0;

 yInc[4] = -this.genes[6];

 xInc[5] = -this.genes[4];

 yInc[5] = -this.genes[5];

 xInc[6] = -this.genes[3];

 yInc[6] = 0;

 xInc[7] = -this.genes[1];

 yInc[7] = this.genes[2];

 //Initial line length is based on the number

 // of stages to be drawn. Line length is

 // reduced by one as each successive stage is

 // drawn. Algorithm terminates when length

 // reaches zero.

 length = this.genes[7];

 }//end constructor

 double[] getGenes(){

 return this.genes;

 }//end getGenes

 //Override the paint method

 public void paint(Graphics g){

 //Adjust location of the plotting origin

 g.translate(xOrigin,yOrigin);

 //Draw the Biomorph object recursively

 drawIt(g,xCoor,yCoor,length,direction,xInc,

 yInc,scale);

 }//end paint()

 //---//

 void drawIt(Graphics g,double oldX,

 double oldY,double len,int newDir,

 double[] xInc,double[] yInc,

 double scale){

 //Direction values are limited to the range

 // from 0 to 7.

 newDir = (newDir + 8)%8;

 //Compute the end points of the line to be

 // drawn based ultimately on the values in

 // the gene array.

 double newX = oldX + len * xInc[newDir];

 double newY = oldY + len * yInc[newDir];

 //Draw the line. Correct for the fact that

 // the default direction for positive y is

 // down the screen.

 g.drawLine((int)(oldX/scale),

 (int)(-oldY/scale),

 (int)(newX/scale),

 (int)(-newY/scale));

 //Continue drawing lines recursively until

 // the length of the next line reaches zero.

 // Decrease the length of the line by one for

 // each successive stage. The values for

 // newX and newY become the incoming oldX and

 // oldY values for the next recursion. Don't

 // waste time trying to draw a line with zero

 // length.

 if(len > 1){

 drawIt(g,newX,newY,len-1,newDir+1,xInc,

 yInc,scale);

 drawIt(g,newX,newY,len-1,newDir-1,xInc,

 yInc,scale);

 }//end if

 }//end drawIt

}//end class Biomorph

//===//

Listing 31

/*File Biomorph02.java Copyright 2004,R.G.Baldwin

Revised 4/8/04

The purpose of this program is to compute and

display the first nine stages of growth for a

Biomorph based on a complex gene set where each

of the seven genes that control the shape of the

Biomorph are obtained from a random number

generator. This program should produce Biomorph

objects having different appearances each time it

is run.

This program is loosely based on material in

Chapter 8 of the book entitled Windows Hothouse

by Mark Clarkson. However, it was necessary for

me to find and fix several typographical errors

in the C++ algorithm presented in that book.

Tested using J2SE 1.4.2 under WinXP.

**/

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class Biomorph02{

 //Store the genes here. The first seven genes

 // control the shape of the Biomorph. The

 // eighth gene specifies the number of stages

 // used to construct the Biomorph.

 static double[] genes = new double[8];

 //This random number generator is required by

 // the Biomorph constructor. In this program,

 // it is used to create the gene set, but is

 // not used otherwise in the construction of

 // the Biomorph objects.

 static Random rGen =

 new Random(new Date().getTime());

 public static void main(String[] args){

 //Create 7 random gene values. This is the

 // code in this program that is different

 // from the code in the program named

 // Biomorph01.

 for(int cnt = 0; cnt < 7; cnt++){

 genes[cnt] = rGen.nextInt(7)-3;

 }//end for

 //Specify the number of stages in the first

 // Biomorph object.

 genes[7] = 1;

 //Instantiate the GUI

 new GUI(genes,rGen);

 }//end main

}//end class Biomorph02

//===//

//The following class is used to instantiate a

// graphical user interface object that causes

// the first nine stages of a Biomorph object to

// be created and displayed in nine grid cells in

// a Frame object.

class GUI extends Frame{

 Random rGen;

 double[] genes;

 //Constructor

 public GUI(double[] genes,Random rGen){

 //Save incoming parameters in local

 // variables.

 this.rGen = rGen;

 this.genes = genes;

 //Subdivide the Frame into nine grid cells.

 setLayout(new GridLayout(3,3));

 //Create and display nine stages of growth

 // for a Biomorph object using the same genes

 // for each stage. Specify the third

 // parameter value to be negative to prevent

 // the Biomorph constructor from mutating the

 // genes.

 for(int cnt = 0; cnt < 9; cnt++){

 Biomorph biomorph =

 new Biomorph(genes,

 rGen,

 -1,

 genes[7]/8,

 66,

 66);

 //Cause the background colors of the

 // Biomorph objects to alternate between

 // yellow and green so that they will be

 // visually separable in the Frame.

 if(cnt%2 == 0){

 biomorph.setBackground(Color.YELLOW);

 }else{

 biomorph.setBackground(Color.GREEN);

 }//end else

 //Add the Biomorph object to the Frame in

 // the next grid cell.

 this.add(biomorph);

 //Increase the number of stages for the

 // next Biomorph object.

 genes[7] += 1;

 }//end for loop

 setTitle("Copyright 2004, R.G.Baldwin");

 setSize(400,400);

 setVisible(true);

 //Instantiate and register Listener object

 // that will terminate the program when the

 // user closes the Frame

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }//end windowClosing

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

}//end class GUI definition

//===//

//This class is used to instantiate a Biomorph

// object. It is based loosely on Chapter 8 of

// the book entitled Windows Hothouse by Mark

// Clarkson. However, the C++ algorithm

// presented in that book contains several

// serious typographical errors. It was

// necessary for me to find and fix those errors

// when writing a Java version of the algorithm.

//The constructor receives an array of eight gene

// values. The final value in the array specifies

// the number of stages to be used to construct

// the Biomorph object. The first stage produces

// a single stem. Each successive stage causes

// all existing stems to bifurcate into two new

// stems. Thus, the number of stems increases as

// a power of two based on the number of stages.

// For example, a Biomorph created with two

// stages contains three stems. A three-stage

// Biomorph contains seven stems, a four-stage

// Biomorph contains fifteen stems, etc.

//When writing the Java version of the algorithm,

// I elected to maintain all of the data as type

// double in order to preserve arithmetic

// accuracy. Values are converted from double to

// int at the very last step before displaying

// the Biomorph on the screen.

//The constructor receives a random number

// generator and a count value that are used to

// mutate a gene in the array of genes by a

// random value of plus or minus one whenever the

// count value is within the range from 0 to 7.

// If the count value is outside this range,

// there is no gene mutation.

//A method named getGenes returns the gene array

// containing the possibly mutated gene. This is

// useful for experiments in selective breeding.

//The constructor receives a scale factor that is

// used to adjust the overall size of the plot to

// cause it to fit in the allocated plotting

// area. Generally speaking, the size of the raw

// display of the Biomorph object would increase

// as the number of stages increases. Therefore,

// it is useful to cause the scale factor to vary

// inversely with the number of stages.

//The constructor receives a pair of int values

// that are used to move the plotting origin

// from the default upper-left corner to another

// location in the plotting area.

//The direction of the first stem displayed for

// the Biomorph object is hard-coded to be

// vertical going up the screen, starting at the

// origin.

class Biomorph extends Panel{

 double[] xInc = new double[8];

 double[] yInc = new double[8];

 double[] genes;

 double xCoor = 0;//Start drawing here

 double yCoor = 0;//Start drawing here

 int direction = 0;//Initial drawing direction

 double length;

 double scale;

 int xOrigin;

 int yOrigin;

 //Constructor

 Biomorph(double[] genes,Random rGen,int cnt,

 double scale,int xOrigin,int yOrigin){

 //Save local copies of incoming parameters.

 this.genes = (double[])genes.clone();

 this.scale = scale;

 this.xOrigin = xOrigin;

 this.yOrigin = yOrigin;

 //Mutate gene at position cnt unless cnt is

 // out of the range from 0 through 7

 // inclusive.

 if((cnt>=0) && (cnt<=7)){

 double mutantValue = rGen.nextInt(2)*2-1;

 this.genes[cnt] += mutantValue;

 //Don't allow the eighth gene to go

 // negative

 if(this.genes[7] < 0)this.genes[7] = 0;

 }//end if

 //Compute incremental ends of lines based on

 // gene values. Note that the C++ algorithm

 // presented in the Clarkson book appears to

 // contain several errors at this point.

 // Either that, or perhaps I don't fully

 // understand his version of the algorithm.

 xInc[0] = 0;

 yInc[0] = this.genes[0];

 xInc[1] = this.genes[1];

 yInc[1] = this.genes[2];

 xInc[2] = this.genes[3];

 yInc[2] = 0;

 xInc[3] = this.genes[4];

 yInc[3] = -this.genes[5];

 xInc[4] = 0;

 yInc[4] = -this.genes[6];

 xInc[5] = -this.genes[4];

 yInc[5] = -this.genes[5];

 xInc[6] = -this.genes[3];

 yInc[6] = 0;

 xInc[7] = -this.genes[1];

 yInc[7] = this.genes[2];

 //Initial line length is based on the number

 // of stages to be drawn. Line length is

 // reduced by one as each successive stage is

 // drawn. Algorithm terminates when length

 // reaches zero.

 length = this.genes[7];

 }//end constructor

 double[] getGenes(){

 return this.genes;

 }//end getGenes

 //Override the paint method

 public void paint(Graphics g){

 //Adjust location of the plotting origin

 g.translate(xOrigin,yOrigin);

 //Draw the Biomorph object recursively

 drawIt(g,xCoor,yCoor,length,direction,xInc,

 yInc,scale);

 }//end paint()

 //---//

 void drawIt(Graphics g,double oldX,

 double oldY,double len,int newDir,

 double[] xInc,double[] yInc,

 double scale){

 //Direction values are limited to the range

 // from 0 to 7.

 newDir = (newDir + 8)%8;

 //Compute the end points of the line to be

 // drawn based ultimately on the values in

 // the gene array.

 double newX = oldX + len * xInc[newDir];

 double newY = oldY + len * yInc[newDir];

 //Draw the line. Correct for the fact that

 // the default direction for positive y is

 // down the screen.

 g.drawLine((int)(oldX/scale),

 (int)(-oldY/scale),

 (int)(newX/scale),

 (int)(-newY/scale));

 //Continue drawing lines recursively until

 // the length of the next line reaches zero.

 // Decrease the length of the line by one for

 // each successive stage. The values for

 // newX and newY become the incoming oldX and

 // oldY values for the next recursion. Don't

 // waste time trying to draw a line with zero

 // length.

 if(len > 1){

 drawIt(g,newX,newY,len-1,newDir+1,xInc,

 yInc,scale);

 drawIt(g,newX,newY,len-1,newDir-1,xInc,

 yInc,scale);

 }//end if

 }//end drawIt

}//end class Biomorph

//===//

Listing 32

/*File Biomorph03.java Copyright 2004,R.G.Baldwin

Revised 04/08/04

This program falls in the general category of

Artificial Life. The program models

an experiment in the evolutionary concept of

artificial selection as opposed to natural

selection. For example, the variety of plants,

animals, and birds that exist on on uninhabited

island represent natural selection, sometimes

referred to as survival of the fittest.

A dalmation dog, on the other hand, is probably

the result of artificial selection. In other

words, over a long period of time, people

selected certain dogs for breeding to accentuate

certain characteristics (such as black spots on a

white coat) and to suppress other characteristics

(such as a long red coat). Over time, what

resulted was a type of dog that we know as the

dalmation dog. Although those who did that may

not have known that those characteristics were

represented by genes that were accentuated or

suppressed through selective breeding, we know

(or at least believe) that to be the case now.

This program makes it possible for you to

selectively breed successive generations of

artificial creatures known as Biomorph objects.

A single parent in one generation produces eight

offspring in the next generation.

Each Biomorph object is a recursively branching

tree consisting of many limbs of different

lengths that branch off in different directions.

Each such Biomorph object has eight genes that

control the size,the number, and the angle of the

branches.

During the creation of each new generation, one

of the genes for each of the eight offspring is

randomly mutated to produce a creature that is

similar to, but different from its parent. You

can select one of the offspring from each

generation to become the parent of the next

generation in order to accentuate certain

characteristics and to suppress other

characteristics. By continuing this process

through a large number of generations, you can

cause the resulting Biomorph objects to resemble

birds, bugs, animals, airplanes,human faces, or

whatever strikes your fancy.

The parent for each generation is displayed as

the ninth Biomorph object. If you don't like any

of the eight offspring of that parent, you can

select it again and cause it to produce eight

more offspring based on random mutations of the

genes.

This program is loosely based on Chapter 8 of the

book entitled Windows Hothouse by Mark Clarkson.

That chapter was based on a book and a paper

published by Richard Dawkins. The book was

entitled The Blind Watchmaker. The paper was

entitled The Evolution of Evolvability and

appeared in the book entitled Artificial Life.

Tested using J2SE 1.4.2 under WinXP.

**/

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class Biomorph03 implements MouseListener{

 static double[] genes = new double[8];

 static GUI gui;

 static MouseListener listener;

 static Random rGen = new Random(

 new Date().getTime());

 public static void main(String[] args){

 //An object of this class is a mouse listener

 listener = new Biomorph03();

 //Create initial set of genes.

 for(int cnt = 0; cnt < 7; cnt++){

 genes[cnt] = 1.0;

 }//end for

 //Establish the initial number of stages that

 // will be used to create the first

 // generation of Biomorph objects. This

 // value, which is contained in the eighth

 // gene can increase or decrease due to

 // mutation of the genes. If it goes to

 // zero, that Biomorph object will disappear.

 // It is not allowed to go negative.

 genes[7] = 5;

 //Instantiate a new GUI object.

 gui = new GUI(genes,listener,rGen);

 }//end main

 //Define a MouseEvent handler to handle mouse

 // clicks on Biomorph objects. The mouse is

 // used to select one of nine Biomorph objects

 // to become the parent of the next generation.

 public void mouseClicked(MouseEvent e){

 //Identify the specific Biomorph object that

 // was selected with the mouse. Get and save

 // the mutated gene array belonging to that

 // object. This will be the gene array of

 // the parent of the next generation.

 Biomorph theMorph =

 (Biomorph)(e.getSource());

 genes = theMorph.getGenes();

 //Dispose of the existing GUI object in

 // preparation for creating a new one.

 gui.dispose();

 //Instantiate a new GUI object based on the

 // mutated gene array obtained from the

 // Biomorph object that was selected.

 gui = new GUI(genes,listener,rGen);

 }//end mouseClicked

 //Define remaining methods of the MouseListener

 // interface as empty methods.

 public void mousePressed(MouseEvent e){};

 public void mouseReleased(MouseEvent e){};

 public void mouseEntered(MouseEvent e){};

 public void mouseExited(MouseEvent e){};

}//end class Biomorph03

//===//

//The following class is used to instantiate a

// graphical user interface object that displays

// nine Biomorph objects in a 3x3 grid.

class GUI extends Frame{

 Random rGen;

 Biomorph[] morphs = new Biomorph[9];

 double[] genes;

 //Constructor

 public GUI(double[] genes,

 MouseListener listener,

 Random rGen){

 //Save incoming parameters.

 this.rGen = rGen;

 this.genes = genes;

 //Subdivide the GUI into nine grid cells of

 // equal size.

 setLayout(new GridLayout(3,3));

 //Instantiate nine Biomorph objects. Add

 // them to the GUI. They are placed in the

 // grid cells in the GUI from left to right,

 // top to bottom.

 //Register a mouse listener on each Biomorph

 // object. Set the background color for each

 // Biomorph object to produce alternating

 // green and yellow backgrounds.

 for(int cnt = 0; cnt < 9; cnt++){

 //Instantiate and save a new Biomorph

 // object. Set the origin to be the center

 // of the grid cell.

 morphs[cnt] = new Biomorph(genes,

 rGen,

 cnt,

 genes[7]/8,

 66,

 66);

 //Add this Biomorph object to the Frame in

 // the next grid cell.

 this.add(morphs[cnt]);

 //Register a mouse listener on the Biomorph

 // object.

 morphs[cnt].addMouseListener(listener);

 //Cause the background colors of the

 // Biomorph objects to alternate between

 // yellow and green so that they will be

 // visually separable in the Frame.

 if(cnt%2 == 0){

 morphs[cnt].setBackground(Color.YELLOW);

 }else{

 morphs[cnt].setBackground(Color.GREEN);

 }//end else

 }//end for loop

 //Finish the GUI and make it visible.

 setTitle("Copyright 2004, R.G.Baldwin");

 setSize(400,400);

 setVisible(true);

 //Instantiate and register a Listener object

 // that will terminate the program when the

 // user closes the Frame

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 System.exit(0);

 }//end windowClosing

 }//end WindowAdapter

);//end addWindowListener

 }//end constructor

}//end class GUI definition

//===//

//This class is used to instantiate a Biomorph

// object. It is based loosely on Chapter 8 of

// the book entitled Windows Hothouse by Mark

// Clarkson. However, the C++ algorithm

// presented in that book contains several

// serious typographical errors. It was

// necessary for me to find and fix those errors

// when writing a Java version of the algorithm.

//The constructor receives an array of eight gene

// values. The final value in the array specifies

// the number of stages to be used to construct

// the Biomorph object. The first stage produces

// a single stem. Each successive stage causes

// all existing stems to bifurcate into two new

// stems. Thus, the number of stems increases as

// a power of two based on the number of stages.

// For example, a Biomorph created with two

// stages contains three stems. A three-stage

// Biomorph contains seven stems, a four-stage

// Biomorph contains fifteen stems, etc.

//When writing the Java version of the algorithm,

// I elected to maintain all of the data as type

// double in order to preserve arithmetic

// accuracy. Values are converted from double to

// int at the very last step before displaying

// the Biomorph on the screen.

//The constructor receives a random number

// generator and a count value that are used to

// mutate a gene in the array of genes by a

// random value of plus or minus one whenever the

// count value is within the range from 0 to 7.

// If the count value is outside this range,

// there is no gene mutation.

//A method named getGenes returns the gene array

// containing the possibly mutated gene. This is

// useful for experiments in selective breeding.

//The constructor receives a scale factor that is

// used to adjust the overall size of the plot to

// cause it to fit in the allocated plotting

// area. Generally speaking, the size of the raw

// display of the Biomorph object would increase

// as the number of stages increases. Therefore,

// it is useful to cause the scale factor to vary

// inversely with the number of stages.

//The constructor receives a pair of int values

// that are used to move the plotting origin

// from the default upper-left corner to another

// location in the plotting area.

//The direction of the first stem displayed for

// the Biomorph object is hard-coded to be

// vertical going up the screen, starting at the

// origin.

class Biomorph extends Panel{

 double[] xInc = new double[8];

 double[] yInc = new double[8];

 double[] genes;

 double xCoor = 0;//Start drawing here

 double yCoor = 0;//Start drawing here

 int direction = 0;//Initial drawing direction

 double length;

 double scale;

 int xOrigin;

 int yOrigin;

 //Constructor

 Biomorph(double[] genes,Random rGen,int cnt,

 double scale,int xOrigin,int yOrigin){

 //Save local copies of incoming parameters.

 this.genes = (double[])genes.clone();

 this.scale = scale;

 this.xOrigin = xOrigin;

 this.yOrigin = yOrigin;

 //Mutate gene at position cnt unless cnt is

 // out of the range from 0 through 7

 // inclusive.

 if((cnt>=0) && (cnt<=7)){

 double mutantValue = rGen.nextInt(2)*2-1;

 this.genes[cnt] += mutantValue;

 //Don't allow the eighth gene to go

 // negative

 if(this.genes[7] < 0)this.genes[7] = 0;

 }//end if

 //Compute incremental ends of lines based on

 // gene values. Note that the C++ algorithm

 // presented in the Clarkson book appears to

 // contain several errors at this point.

 // Either that, or perhaps I don't fully

 // understand his version of the algorithm.

 xInc[0] = 0;

 yInc[0] = this.genes[0];

 xInc[1] = this.genes[1];

 yInc[1] = this.genes[2];

 xInc[2] = this.genes[3];

 yInc[2] = 0;

 xInc[3] = this.genes[4];

 yInc[3] = -this.genes[5];

 xInc[4] = 0;

 yInc[4] = -this.genes[6];

 xInc[5] = -this.genes[4];

 yInc[5] = -this.genes[5];

 xInc[6] = -this.genes[3];

 yInc[6] = 0;

 xInc[7] = -this.genes[1];

 yInc[7] = this.genes[2];

 //Initial line length is based on the number

 // of stages to be drawn. Line length is

 // reduced by one as each successive stage is

 // drawn. Algorithm terminates when length

 // reaches zero.

 length = this.genes[7];

 }//end constructor

 double[] getGenes(){

 return this.genes;

 }//end getGenes

 //Override the paint method

 public void paint(Graphics g){

 //Adjust location of the plotting origin

 g.translate(xOrigin,yOrigin);

 //Draw the Biomorph object recursively

 drawIt(g,xCoor,yCoor,length,direction,xInc,

 yInc,scale);

 }//end paint()

 //---//

 void drawIt(Graphics g,double oldX,

 double oldY,double len,int newDir,

 double[] xInc,double[] yInc,

 double scale){

 //Direction values are limited to the range

 // from 0 to 7.

 newDir = (newDir + 8)%8;

 //Compute the end points of the line to be

 // drawn based ultimately on the values in

 // the gene array.

 double newX = oldX + len * xInc[newDir];

 double newY = oldY + len * yInc[newDir];

 //Draw the line. Correct for the fact that

 // the default direction for positive y is

 // down the screen.

 g.drawLine((int)(oldX/scale),

 (int)(-oldY/scale),

 (int)(newX/scale),

 (int)(-newY/scale));

 //Continue drawing lines recursively until

 // the length of the next line reaches zero.

 // Decrease the length of the line by one for

 // each successive stage. The values for

 // newX and newY become the incoming oldX and

 // oldY values for the next recursion. Don't

 // waste time trying to draw a line with zero

 // length.

 if(len > 1){

 drawIt(g,newX,newY,len-1,newDir+1,xInc,

 yInc,scale);

 drawIt(g,newX,newY,len-1,newDir-1,xInc,

 yInc,scale);

 }//end if

 }//end drawIt

}//end class Biomorph

//===//

Listing 33

Copyright 2004, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects, and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:Baldwin@DickBaldwin.com

