
Java Sound, Using Audio Line Events

Baldwin shows you how to use audio line events. You can use this approach to register listeners

and to receive notifications whenever an audio line is opened, started, stopped, or closed.

Published: April 15, 2003

By Richard G. Baldwin

Java Programming Notes # 2018

 Preface

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 Complete Program Listing

Preface

This series of lessons is designed to teach you how to use the Java Sound API. The first lesson

in the series was entitled Java Sound, An Introduction. The previous lesson was entitled Java

Sound, Playing Back Audio Files using Java.

Two types of audio data

Two different types of audio data are supported by the Java Sound API:

 Sampled audio data

 Musical Instrument Digital Interface (MIDI) data

The two types of audio data are very different. I am concentrating on sampled audio data at this

point in time. I will defer my discussion of MIDI until later.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

mailto:Baldwin@DickBaldwin.com
http://www.developer.com/java/other/article.php/1565671
http://www.developer.com/java/other/article.php/2173111
http://www.developer.com/java/other/article.php/2173111
http://softwaredev.earthweb.com/java

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

Preview

The previous lesson showed you how to write a program that you can use to play back audio

files, including those that you create using a Java program, and those that you acquire from other

sources.

Earlier lessons in the series showed you how to:

 Capture microphone data into audio files types of your own choosing.

 Capture microphone data into a ByteArrayOutputStream object, and how to use the

Sound API to play back previously captured audio data.

 Identify the mixers available on your system, and how to specify a particular mixer for

use in the acquisition of audio data from a microphone.

 Understand the use of lines and mixers in the Java Sound API.

In this lesson, I will teach you how to use events fired by audio lines to synchronize audio

activities with other activities.

Discussion and Sample Code

Synchronizing other activities with sound

Suppose you need to play some music, and to cause an animation to start and stop in

synchronism with the beginning and the ending of the music. How would you synchronize those

two activities?

There are probably several ways to accomplish this task. One way would be to use the events

fired by the audio line to synchronize the beginning and the ending of the animation.

What is an audio line event?

Audio lines fire events when they are opened, started, stopped, or closed. You can instantiate

listener objects and register them on the Line object to be notified each time the line fires an

event.

You can define event handler methods belonging to the listener objects to perform whatever

action you need to perform each time the line fires an event. I will provide a sample program

and explain how to do this in this lesson.

The user interface

http://www.dickbaldwin.com/

When the sample program in this lesson is executed, the GUI shown in Figure 1 appears on the

screen. As you can see, this GUI contains the following components:

 A Capture button

 A Stop button

 A Playback button

Figure 1 Program GUI

Operation of the program

The program demonstrates the capture and subsequent playback of audio data, and also

demonstrates the instantiation, registration, and operation of line event listeners as well. The

event listeners display messages on the screen when the various audio line events occur.

Input data from a microphone is captured and saved in a ByteArrayOutputStream object when

the user clicks the Capture button.

Data capture stops when the user clicks the Stop button.

Playback begins when the user clicks the Playback button.

Event handler output is displayed

Line events are fired each time the user clicks one of the buttons and causes the line to be

opened, started, stopped, or closed. The registered event handler methods display information on

the screen about the event and the line each time such an event is fired. I will provide sample

screen output at the appropriate points in the discussion.

Will discuss in fragments

As usual, I will discuss this program in fragments. A complete listing of the program is shown in

Listing 16 near the end of the lesson.

Updated version of a previously-discussed program

The program that I will discuss in this lesson is an updated version of the program that I

discussed in the following lessons:

 Java Sound, Getting Started, Part 1, Playback

 Java Sound, Getting Started, Part 2, Capture using Specified Mixer

http://www.developer.com/java/other/article.php/1572251
http://www.developer.com/java/other/article.php/1579071

I will discuss the entire program very briefly to establish the context. However, I will

concentrate my detailed discussion on those aspects of the program that were updated to support

audio line event handling.

(I strongly recommend that you refer back to the two lessons listed above for the

detailed discussion of those parts of the program that don't involve event

handling.)

The program named AudioEvents01

The program named AudioEvents01 demonstrates the use of a Java program to:

 Capture audio data from a microphone into a ByteArrayOutputStream object.

 Register an event listener object on the line used to capture the data.

 Handle an event each time the capture line is opened, started, stopped, or closed.

 Play back the data stored in the ByteArrayOutputStream object.

 Register an event listener object on the line used to play back the captured data.

 Handle an event each time the playback line is opened, started, stopped, or closed.

Behavior of the event handler methods

The behavior of the event handler methods is very simple in this sample program. The behavior

is provided solely for purposes of illustration. You are reminded that the behavior of the event

handler methods can be as simple or as complex as your needs may dictate. The important point

is that the event handler methods are invoked when the events are fired. You can design those

methods to provide whatever behavior is appropriate for your situation.

Should you spawn a new thread?

As in all forms of event handling in Java, if the task to be performed by your event handler

method will require a significant amount of time to complete, you should probably spawn a new

thread to carry out that task and cause your event handler method to return as soon as possible.

(I didn't do that in this program due to the simplicity and speed of the behavior of

my event handling methods.)

The controlling class named AudioEvents01

The class definition for the controlling class begins in Listing 1.

public class AudioEvents01 extends

JFrame{

 boolean stopCapture = false;

 ByteArrayOutputStream

byteArrayOutputStream;

 AudioFormat audioFormat;

 TargetDataLine targetDataLine;

 AudioInputStream audioInputStream;

 SourceDataLine sourceDataLine;

 public static void main(String

args[]){

 new AudioEvents01();

 }//end main

Listing 1

The code in Listing 1 includes the declaration of some instance variables and the main

method. The behavior of the main method is simply to instantiate a new object of the

controlling class.

The constructor

The constructor for the controlling class begins in Listing 2.

 public AudioEvents01(){//constructor

 final JButton captureBtn =

 new

JButton("Capture");

 final JButton stopBtn = new

JButton("Stop");

 final JButton playBtn =

 new

JButton("Playback");

 captureBtn.setEnabled(true);

 stopBtn.setEnabled(false);

 playBtn.setEnabled(false);

Listing 2

The code in Listing 2 creates the button objects shown in Figure 1, and sets the initial enabled

and disabled properties of those buttons.

Action event handlers

The code in Listing 3 instantiates three ActionListener objects and registers each of those

listener objects on one of the three buttons shown in the GUI in Figure 1.

 captureBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

ActionEvent e){

captureBtn.setEnabled(false);

 stopBtn.setEnabled(true);

 playBtn.setEnabled(false);

 //Capture input data from

the

 // microphone until the Stop

button is

 // clicked.

 captureAudio();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 getContentPane().add(captureBtn);

 stopBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

ActionEvent e){

 captureBtn.setEnabled(true);

 stopBtn.setEnabled(false);

 playBtn.setEnabled(true);

 //Terminate the capturing of

input

 // data from the microphone.

 stopCapture = true;

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 getContentPane().add(stopBtn);

 playBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

ActionEvent e){

 //Play back all of the data

that was

 // saved during capture.

 playAudio();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 getContentPane().add(playBtn);

Listing 3

Code very similar to that shown in Listing 3 was discussed in detail in the two lessons listed

earlier. Therefore, I won't repeat that discussion here.

Complete the GUI

The code in Listing 4 takes care of a few more details required to complete the GUI and make it

visible.

 getContentPane().setLayout(new

FlowLayout());

 setTitle("Copyright 2003,

R.G.Baldwin");

setDefaultCloseOperation(EXIT_ON_CLOSE);

 setSize(250,70);

 setVisible(true);

 }//end constructor

Listing 4

The code in Listing 4 signals the end of the constructor.

The captureAudio method

If you refer back to Listing 3, you will see that the event handler on the Capture button invokes

the method named captureAudio to cause the actual data capture operation to be carried

out. The method named captureAudio captures audio input from a microphone and saves it in a

ByteArrayOutputStream object.

The code for the method named captureAudio begins in Listing 5

 private void captureAudio(){

 try{

 //Get everything set up for

capture

 audioFormat = getAudioFormat();

 DataLine.Info dataLineInfo =

 new

DataLine.Info(

TargetDataLine.class,

audioFormat);

 targetDataLine =

(TargetDataLine)AudioSystem.getLine(

dataLineInfo);

Listing 5

Nothing new so far

So far, there is still nothing new to discuss. The code in Listing 5 was discussed in detail in the

two lessons listed earlier, so I won't repeat that discussion here.

The main thing to note in Listing 5 is the creation of an object of type Line, and the storage that

object's reference in an instance variable of type TargetDataLine named targetDataLine.

The open, start, stop, and close methods

The previous lessons have discussed the methods of the TargetDataLine object named open

start, stop, and close in detail. However, here is some information from Sun that I did not

discuss in those lessons.

With respect to the open method, Sun tells us,

"If this operation succeeds, the line is marked as open, and an OPEN event is

dispatched to the line's listeners."

Similarly, with respect to the start method, Sun tells us,

"When audio capture or playback starts, a START event is generated."

As you have probably guessed by now, Sun has this to say about the stop method.

"When audio capture or playback stops, a STOP event is generated."

Finally, Sun has this to say about the close method.

"If this operation succeeds, the line is marked closed and a CLOSE event is

dispatched to the line's listeners."

Event registration methods

If you are familiar with Java event handling in general, and JavaBeans design patterns in

particular, you have probably already predicted that the TargetDataLine object provides the

following event registration methods:

 addLineListener(LineListener listener)

 removeLineListener(LineListener listener)

The addLineListener method

Here is what Sun has to say about the addLineListener method.

"Adds a listener to this line. Whenever the line's status changes, the listener's

update() method is called with a LineEvent object that describes the change."

Similarly, the removeLineListener method

"Removes the specified listener from this line's list of listeners."

The LineListener interface

Note that both of the registration methods require an incoming parameter of the LineListener

type. Stated differently, in each case, the incoming parameter must be a reference to an object

instantiated from a class that implements the LineListener interface.

Sun has this to say about the LineListener interface.

"Instances of classes that implement the LineListener interface can register to

receive events when a line's status changes."

The LineListener interface declares a single method named update, which receives an incoming

parameter of type LineEvent.

The update method

Every class that implements the LineListener interface must provide a concrete definition of the

update method. Sun has this to say about that method.

"Informs the listener that a line's state has changed. The listener can then invoke

LineEvent methods to obtain information about the event."

In other words, whenever a LineEvent occurs, the Line object notifies all registered listeners by

invoking the update method on each registered listener object, passing a LineEvent object's

reference as a parameter to the update method. The LineEvent object encapsulates information

about the event.

The LineEvent class

That brings us to the crux of the matter involving audio line event firing and handling. Sun has

this to say about the LineEvent class.

"The LineEvent class encapsulates information that a line sends its listeners

whenever the line opens, closes, starts, or stops. Each of these four state changes

is represented by a corresponding type of event. A listener receives the event as a

parameter to its update method. By querying the event, the listener can learn the

type of event, the line responsible for the event, and how much data the line had

processed when the event occurred."

The LineEvent methods

As of Java SDK 1.4.1, an object of the LineEvent class provides the following methods that an

event handler can use to obtain information about the event:

 getFramePosition - Returns the position of the line's audio data when the event

occurred, expressed in sample frames.

 getLine - Returns a reference to the Line object that fired the event.

 getType - Returns the type of the event (open, start, stop, or close) as LineEvent.Type.

 toString - Returns a string representation of the event.

Register a line listener on the TargetDataLine object

Finally, we are going to see the above discussion rendered in code. The somewhat cryptic code

in Listing 6 instantiates an anonymous listener object from an anonymous class that implements

the LineListener interface, and registers that listener object on the TargetDataLine object that

was created in Listing 5.

 targetDataLine.addLineListener(

 new LineListener(){

 public void update(LineEvent

e){

 System.out.println(

 "Event handler for

TargetDataLine");

 System.out.println(

 "Event type: " +

e.getType());

 System.out.println("Line

info: " +

e.getLine().getLineInfo());

System.out.println();//blank line

 }//end update

 }//end LineListener

);//end addLineListener()

Listing 6

The update method

The code in Listing 6 defines the update method that will be invoked on the registered listener

object each time a line event occurs.

The code in the update method begins by printing "Event handler for TargetDataLine" on the

screen.

Then it invokes the getType method to get and display the type of the line event.

Following that, it invokes the getLine method to get a reference to the Line object that fired the

event. It uses that reference to invoke the getLineInfo method on the line and display

information about the line.

Sample screen output

Figure 2 shows the screen output that appears following a click on the Capture button on my

system. (The line info output on your system may be different.)

(Note that line breaks were manually inserted in Figure 2 to accommodate this

narrow format. The boldface was also manually added for emphasis.)

Event handler for TargetDataLine

Event type: Open

Line info: interface TargetDataLine

supporting

 64 audio formats

Event handler for TargetDataLine

Event type: Start

Line info: interface TargetDataLine

supporting

 64 audio formats

Figure 2

Later on, when we examine the code that is used to capture the data, you will see the statements

that open and start the line, causing the OPEN and START events shown in Figure 2 to be fired.

Create and start a thread to capture the audio data

The code in Listing 7 instantiates a new thread object and starts it running. The purpose of this

thread is to perform the actual data capture. The run method of the thread will continue to

capture audio data from the microphone until the Stop button is clicked by the user.

 new CaptureThread().start();

 }catch (Exception e) {

 System.out.println(e);

 System.exit(0);

 }//end catch

 }//end captureAudio method

Listing 7

Once the thread is running to capture the data, the captureAudio method returns control to the

event handler on the Capture button, which terminates shortly thereafter. This frees up the

event-handling thread to handle an event when the Stop button is clicked.

The CaptureThread class

At this point, I am going to discuss an inner class, an object of which is used to capture data from

the microphone. Once again, this class is very similar to one that was discussed in detail in the

two lessons listed earlier. Therefore, this discussion will be very brief, emphasizing only those

aspects of the code in the class that is important to audio line event handling.

The beginning of the class named CaptureThread and its run method is shown in Listing 8.

class CaptureThread extends Thread{

 //An arbitrary-size temporary

holding buffer

 byte tempBuffer[] = new byte[10000];

 public void run(){

 byteArrayOutputStream =

 new

ByteArrayOutputStream();

 stopCapture = false;

 try{

Listing 8

If you have studied the two lessons listed previously, there is nothing new or exciting about the

code in Listing 8, so I won't discuss it further. I show it here simply to establish the context for

the discussion that follows.

Open and start the line

The code in Listing 9 isn't new, but it is very interesting in the context of this lesson.

targetDataLine.open(audioFormat);

 targetDataLine.start();

Listing 9

The code in Listing 9 first invokes the open method on the TargetDataLine object. Following

that, it invokes the start method on the TargetDataLine object.

I discussed these two methods in detail in previous lessons. In addition, I told you earlier in this

lesson that the invocation of these methods causes the OPEN and START events to be

fired. Therefore, it is the invocation of these two methods that causes the update method

registered on the TargetDataLine object to be invoked. This, in turn, produces the screen

output shown in Figure 2.

Behavior of the update method

Once again, the behavior that I designed into my version of the update method is very simple. It

just displays some information about the event and the line that fired it.

However, the behavior that you design into your version of the update method can be as simple

or as complex as your needs may dictate.

Loop until stopCapture variable goes true

Continuing with the run method of the CaptureThread class, the code in Listing 10 loops until

the value of the variable named stopCapture changes from false to true. (This happens when

the user clicks the Stop button.)

 while(!stopCapture){

 //Read data from the internal

buffer of

 // the data line.

 int cnt = targetDataLine.read(

tempBuffer,

 0,

tempBuffer.length);

 if(cnt > 0){

 //Save data in output stream

object.

 byteArrayOutputStream.write(

tempBuffer, 0, cnt);

 }//end if

 }//end while

 byteArrayOutputStream.close();

Listing 10

During this period, the code in Listing 10 continues to capture audio data from the microphone

and to store that data in the ByteArrayOutputStream object. (I discussed the operation of this

while loop in detail in the previous lessons.)

Stop and close the TargetDataLine object

When the while loop terminates, the two statements in Listing 11 invoke the stop and close

methods, respectively, on the TargetDataLine object.

 targetDataLine.stop();

 targetDataLine.close();

Listing 11

Fire STOP and CLOSE events

As explained earlier, this causes the TargetDataLine object to fire STOP and CLOSE events

respectively. This, in turn causes the update method in the listener object to be invoked twice in

succession, producing the screen output shown in Figure 3.

Event handler for TargetDataLine

Event type: Stop

Line info: interface TargetDataLine

supporting

 64 audio formats

Event handler for TargetDataLine

Event type: Close

Line info: interface TargetDataLine

supporting

 64 audio formats

Figure 3

The end of the run method

Except for a required catch block, the code in Listing 11 signals the end of the run method of

the CaptureThread class. That code also signals the end of the class as well.

Finally, the code in Listing 11 signals the end of the discussion of the data capture portion of this

program.

The playback portion of the program

With respect to audio line event handling, there is very little difference between the playback

portion of this program and the data capture portion discussed above.

I discussed the event handling aspects of the data capture portion of the program in detail in the

preceding paragraphs. I discussed the other aspects of the playback portion of the program in

detail in the lessons listed earlier. Therefore, in the remainder of this lesson, I will discuss the

event handling aspects of the playback portion of the program only briefly. As mentioned

earlier, you can view a complete listing of the program in Listing 16 near the end of the lesson.

The playAudio method

This program uses a method named playAudio to play back the data that was captured and saved

in a ByteArrayOutputStream object.

Get a SourceDataLine object

The capture portion of the program uses a TargetDataLine object to capture microphone data in

real time.

Similarly, the playback portion uses a SourceDataLine object to deliver the audio data to the

speakers in real time.

Much of the early code in the playAudio method was deleted from Listing 12 for brevity. The

first statement in Listing 12 gets a SourceDataLine object's reference and assigns it to a

reference variable named sourceDataLine.

// Code deleted from playAudio method

for brevity

 sourceDataLine =

(SourceDataLine)AudioSystem.getLine(

dataLineInfo);

 //Register a line listener on

the

 // SourceDataLine object

 sourceDataLine.addLineListener(

 new LineListener(){

 public void update(LineEvent

e){

 System.out.println(

 "Event handler for

SourceDataLine");

 System.out.println(

 "Event type: " +

e.getType());

 System.out.println("Line

info: "

 +

e.getLine().getLineInfo());

System.out.println();//blank line

 }//end update

 }//end LineListener

);//end addLineListener()

 //Create a thread to play back

the data and

 // start it running.

 new PlayThread().start();

Listing 12

Register a line listener on the SourceDataLine object

Following that, the code in Listing 12 instantiates a LineListener object and registers it on the

SourceDataLine object. The definition and behavior of the line listener instantiated in Listing

12 is essentially the same as that shown in Listing 6 earlier.

Start a playback thread running

Then the code in Listing 12 instantiates a playback thread object and starts it running. The run

method of the playback thread will continue running until the audio data previously stored in the

ByteArrayOutputStream object is exhausted.

The PlayThread class

The playback thread is instantiated from the PlayThread class, which begins in Listing 13.

class PlayThread extends Thread{

 byte tempBuffer[] = new byte[10000];

 public void run(){

 try{

 int cnt;

sourceDataLine.open(audioFormat);

 sourceDataLine.start();

Listing 13

The code in Listing 13 invokes the open and start methods on the SourceDataLine object,

causing OPEN and START events to be fired.

The screen output

These events are handled by the update event handler method defined in Listing 12. This causes

the output shown in Figure 4 to appear on the screen.

Event handler for SourceDataLine

Event type: Open

Line info: interface SourceDataLine

supporting

 8 audio formats

Event handler for SourceDataLine

Event type: Start

Line info: interface SourceDataLine

supporting

 8 audio formats

Figure 4

(Note that the Line info regarding the SourceDataLine in Figure 4 is a little

different from the similar information regarding the TargetDataLine in Figure

2. Information for your system may be different from that shown for my system.)

The playback loop

As is the case for the data capture portion of this program, the playback portion uses a while loop

to transfer data from the ByteArrayOutputStream object to the internal buffer of the

SourceDataLine object.

 while((cnt =

audioInputStream.read(

tempBuffer,

 0,

tempBuffer.length))

!= -1){

 if(cnt > 0){

 //Write data to the internal

buffer of

 // the data line where it

will be

 // delivered to the speaker.

 sourceDataLine.write(

tempBuffer, 0, cnt);

 }//end if

 }//end while

Listing 14

The SourceDataLine object delivers that audio data in real time to the speakers on the computer.

The data transfer from the ByteArrayOutputStream object to the SourceDataLine object

continues until the data stored in the ByteArrayOutputStream object is exhausted, at which

time the read method in Listing 14 returns -1.

The drain method

The while loop terminates when the data in the ByteArrayOutputStream object is

exhausted. However, the program must not terminate at that point in time. In all likelihood,

there is data still remaining in the internal buffer of the SourceDataLine object that needs to be

sent to the speakers in real time. That is the purpose of the drain method that is invoked in

Listing 15.

 sourceDataLine.drain();

 sourceDataLine.close();

Listing 15

The drain method blocks until the internal buffer of the SourceDataLine object becomes empty,

at which time it returns.

No stop method is invoked

Note that in this case, I did not explicitly invoke the stop method, but a STOP event was fired

anyway. Apparently invoking the close method on a line that has been drained causes both a

STOP event and a CLOSE event to be fired. The screen output produced by the code in Listing

15 is shown in Figure 5.

Event handler for SourceDataLine

Event type: Stop

Line info: interface SourceDataLine

supporting

 8 audio formats

Event handler for SourceDataLine

Event type: Close

Line info: interface SourceDataLine

supporting

 8 audio formats

Figure 5

The getAudioFormat method

There is one additional method that I haven't discussed in this lesson. The method named

getAudioFormat is identical to the method with the same name used in the earlier version of the

program. I explained the behavior of that method in detail in the lessons listed

earlier. Therefore, I won't discuss this method in this lesson. You can view it in Listing 16 near

the end of the lesson.

Run the Program

At this point, you may find it useful to compile and run the program shown in Listing 16 near the

end of the lesson.

Capture the data

Start the program and click the Capture button. Talk into the microphone for a short period of

time and then click the Stop button to terminate data capture. While you are doing this, observe

the output on the command-line screen.

(Be careful and don't attempt to capture too much audio data. The data is being

captured in memory, and if you attempt to capture too much data, you may run

out of memory.)

Play the captured data back

Click the Playback button to cause the captured data to be played back through the speakers on

your computer. Again, observe the output on the command-line screen while you are doing this.

Volume control

If you don't hear anything during playback, you may need to increase your speaker volume. My

laptop computer has a manual volume control in addition to the software volume controls that

are accessible via the speaker icon in the system tray.

In case of a runtime error

If you get a runtime error while attempting to capture the audio data, see the comments in the

getAudioFormat method in Listing 16. You may need to try using a different audio format. I

have received feedback from some readers who tell me that the format that I used in this program

doesn't work on all systems.

Summary

In this lesson, I have presented and explained a program that demonstrates the use of audio line

events. You can use this approach to register listeners and to receive notifications whenever an

audio line is opened, started, stopped, or closed. Once you receive the notification, you can learn

the type of event, the line responsible for the event, information about that line, and how much

data the line had processed when the event occurred.

Complete Program Listing

A complete listing of the program is shown in Listing 16.

/*File AudioEvents01.java

The main purpose of this program is to

demonstrate audio line event handling.

This program demonstrates the capture and

subsequent playback of audio data, and

demonstrates the instantiation and registration

of line event listeners as well. The event

listeners display messages on the screen when

the various audio line events occur.

A GUI appears on the screen containing the

following buttons:

Capture

Stop

Playback

Input data from a microphone is captured and

saved in a ByteArrayOutputStream object when the

user clicks the Capture button.

Data capture stops when the user clicks the Stop

button.

Playback begins when the user clicks the Playback

button.

Following is the screen output following the

click on the Capture button. Note that line

breaks were manually inserted in this, and the

other output material shown below, to cause the

material to fit this narrow format.

Event handler for TargetDataLine

Event type: Open

Line info: interface TargetDataLine supporting

 64 audio formats

Event handler for TargetDataLine

Event type: Start

Line info: interface TargetDataLine supporting

 64 audio formats

Following is the screen output following the

click on the Stop button.

Event handler for TargetDataLine

Event type: Stop

Line info: interface TargetDataLine supporting

 64 audio formats

Event handler for TargetDataLine

Event type: Close

Line info: interface TargetDataLine supporting

 64 audio formats

Following is the screen output following the

click on the Playback button.

Event handler for SourceDataLine

Event type: Open

Line info: interface SourceDataLine supporting

 8 audio formats

Event handler for SourceDataLine

Event type: Start

Line info: interface SourceDataLine supporting

 8 audio formats

Event handler for SourceDataLine

Event type: Stop

Line info: interface SourceDataLine supporting

 8 audio formats

Event handler for SourceDataLine

Event type: Close

Line info: interface SourceDataLine supporting

 8 audio formats

Tested using SDK 1.4.0 under Win2000

**/

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import javax.sound.sampled.*;

public class AudioEvents01 extends JFrame{

 boolean stopCapture = false;

 ByteArrayOutputStream byteArrayOutputStream;

 AudioFormat audioFormat;

 TargetDataLine targetDataLine;

 AudioInputStream audioInputStream;

 SourceDataLine sourceDataLine;

 public static void main(String args[]){

 new AudioEvents01();

 }//end main

 public AudioEvents01(){//constructor

 final JButton captureBtn =

 new JButton("Capture");

 final JButton stopBtn = new JButton("Stop");

 final JButton playBtn =

 new JButton("Playback");

 captureBtn.setEnabled(true);

 stopBtn.setEnabled(false);

 playBtn.setEnabled(false);

 //Register anonymous listeners

 captureBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 captureBtn.setEnabled(false);

 stopBtn.setEnabled(true);

 playBtn.setEnabled(false);

 //Capture input data from the

 // microphone until the Stop button is

 // clicked.

 captureAudio();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 getContentPane().add(captureBtn);

 stopBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 captureBtn.setEnabled(true);

 stopBtn.setEnabled(false);

 playBtn.setEnabled(true);

 //Terminate the capturing of input

 // data from the microphone.

 stopCapture = true;

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 getContentPane().add(stopBtn);

 playBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 //Play back all of the data that was

 // saved during capture.

 playAudio();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 getContentPane().add(playBtn);

 getContentPane().setLayout(new FlowLayout());

 setTitle("Copyright 2003, R.G.Baldwin");

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 setSize(250,70);

 setVisible(true);

 }//end constructor

 //This method captures audio input from a

 // microphone and saves it in a

 // ByteArrayOutputStream object.

 private void captureAudio(){

 try{

 //Get everything set up for capture

 audioFormat = getAudioFormat();

 DataLine.Info dataLineInfo =

 new DataLine.Info(

 TargetDataLine.class,

 audioFormat);

 targetDataLine =

 (TargetDataLine)AudioSystem.getLine(

 dataLineInfo);

 //Register a line listener on the

 // TargetDataLine object

 targetDataLine.addLineListener(

 new LineListener(){

 public void update(LineEvent e){

 System.out.println(

 "Event handler for TargetDataLine");

 System.out.println(

 "Event type: " + e.getType());

 System.out.println("Line info: " +

 e.getLine().getLineInfo());

 System.out.println();//blank line

 }//end update

 }//end LineListener

);//end addLineListener()

 //Create a thread to capture the

 // microphone data and start it running. It

 // will run until the Stop button is

 // clicked.

 new CaptureThread().start();

 }catch (Exception e) {

 System.out.println(e);

 System.exit(0);

 }//end catch

 }//end captureAudio method

 //This method plays back the audio

 // data that has been saved in the

 // ByteArrayOutputStream

 private void playAudio() {

 try{

 //Get everything set up for playback.

 //Get the previously-saved data into a

 // byte array object.

 byte audioData[] = byteArrayOutputStream.

 toByteArray();

 //Get an input stream on the byte array

 // containing the data

 InputStream byteArrayInputStream =

 new ByteArrayInputStream(

 audioData);

 AudioFormat audioFormat = getAudioFormat();

 audioInputStream =

 new AudioInputStream(

 byteArrayInputStream,

 audioFormat,

 audioData.length/audioFormat.

 getFrameSize());

 DataLine.Info dataLineInfo =

 new DataLine.Info(

 SourceDataLine.class,

 audioFormat);

 sourceDataLine =

 (SourceDataLine)AudioSystem.getLine(

 dataLineInfo);

 //Register a line listener on the

 // SourceDataLine object

 sourceDataLine.addLineListener(

 new LineListener(){

 public void update(LineEvent e){

 System.out.println(

 "Event handler for SourceDataLine");

 System.out.println(

 "Event type: " + e.getType());

 System.out.println("Line info: "

 + e.getLine().getLineInfo());

 System.out.println();//blank line

 }//end update

 }//end LineListener

);//end addLineListener()

 //Create a thread to play back the data and

 // start it running. It will run until all

 // the data has been played back, at which

 // time it will automatically stop the

 // line and fire a Stop event.

 new PlayThread().start();

 }catch (Exception e) {

 System.out.println(e);

 System.exit(0);

 }//end catch

 }//end playAudio

 //This method creates and returns an

 // AudioFormat object for a given set of format

 // parameters. If these parameters don't work

 // well for you, try some of the other

 // allowable parameter values, which are shown

 // in comments following the declarations.

 private AudioFormat getAudioFormat(){

 float sampleRate = 8000.0F;

 //8000,11025,16000,22050,44100

 int sampleSizeInBits = 16;

 //8,16

 int channels = 1;

 //1,2

 boolean signed = true;

 //true,false

 boolean bigEndian = false;

 //true,false

 return new AudioFormat(sampleRate,

 sampleSizeInBits,

 channels,

 signed,

 bigEndian);

 }//end getAudioFormat

//===//

//Inner class to capture data from microphone

class CaptureThread extends Thread{

 //An arbitrary-size temporary holding buffer

 byte tempBuffer[] = new byte[10000];

 public void run(){

 byteArrayOutputStream =

 new ByteArrayOutputStream();

 stopCapture = false;

 try{

 targetDataLine.open(audioFormat);

 targetDataLine.start();

 //Loop until stopCapture is set by another

 // thread that services the Stop button.

 while(!stopCapture){

 //Read data from the internal buffer of

 // the data line.

 int cnt = targetDataLine.read(

 tempBuffer,

 0,

 tempBuffer.length);

 if(cnt > 0){

 //Save data in output stream object.

 byteArrayOutputStream.write(

 tempBuffer, 0, cnt);

 }//end if

 }//end while

 byteArrayOutputStream.close();

 targetDataLine.stop();

 targetDataLine.close();

 }catch (Exception e) {

 System.out.println(e);

 System.exit(0);

 }//end catch

 }//end run

}//end inner class CaptureThread

//===//

//Inner class to play back the data that was

// saved.

class PlayThread extends Thread{

 byte tempBuffer[] = new byte[10000];

 public void run(){

 try{

 int cnt;

 sourceDataLine.open(audioFormat);

 sourceDataLine.start();

 //Loop until the input read method returns

 // -1 for empty stream.

 while((cnt = audioInputStream.read(

 tempBuffer,

 0,

 tempBuffer.length))

 != -1){

 if(cnt > 0){

 //Write data to the internal buffer of

 // the data line where it will be

 // delivered to the speaker.

 sourceDataLine.write(

 tempBuffer, 0, cnt);

 }//end if

 }//end while

 //Block and wait for internal buffer of the

 // data line to become empty. When it

 // becomes empty, it will fire a Stop

 // event and return.

 sourceDataLine.drain();

 sourceDataLine.close();

 }catch (Exception e) {

 System.out.println(e);

 System.exit(0);

 }//end catch

 }//end run

}//end inner class PlayThread

//===//

}//end outer class AudioEvents01.java

Listing 16

Copyright 2003, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and private

consultant whose primary focus is a combination of Java, C#, and XML. In addition to the many

platform and/or language independent benefits of Java and C# applications, he believes that a

combination of Java, C#, and XML will become the primary driving force in the delivery of

structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com

