
Java Sound, Capturing Microphone Data into an Audio File

Baldwin shows you how to use the Java Sound API to capture audio data from a microphone and

how to save that data in an audio file type of your choosing.

Published: March 18, 2003

By Richard G. Baldwin

Java Programming Notes # 2014

 Preface

 Preview

 Discussion and Sample Code

 Run the Program

 Summary

 Complete Program Listing

Preface

This series of lessons is designed to teach you how to use the Java Sound API. The first lesson

in the series was entitled Java Sound, An Introduction. The previous lesson was entitled Java

Sound, Getting Started, Part 2, Capture Using Specified Mixer.

Two types of audio data

Two different types of audio data are supported by the Java Sound API:

 Sampled audio data

 Musical Instrument Digital Interface (MIDI) data

The two types of audio data are very different. I am concentrating on sampled audio data at this

point in time. I will defer my discussion of MIDI until later.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different listings and figures while

you are reading about them.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

mailto:Baldwin@DickBaldwin.com
http://www.developer.com/java/other/article.php/1565671
http://www.developer.com/java/other/article.php/1579071
http://www.developer.com/java/other/article.php/1579071
http://softwaredev.earthweb.com/java

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

Preview

In this lesson, I will provide and explain a program that you can use to capture audio data from a

microphone and to write that data into an audio file type of your choosing. You should then be

able to play the audio file back using any of a variety of readily available media players, such as

the Windows Media Player.

I will show you how to write a Java program to play back the data stored in the audio file in a

future lesson.

Discussion and Sample Code

Less complicated program

The previous two lessons showed you how to capture audio data from a microphone, store it in a

memory buffer, and play the data back on demand. As you will see in this lesson, because of the

relatively high-level support for writing audio files in Java, the code required to store the

captured data in an audio file is somewhat simpler than the code required to store the data in a

memory buffer.

What is a TargetDataLine?

I will be using a TargetDataLine object in this program. The terminology used with the Java

sound API can be very confusing. A TargetDataLine object is a streaming mixer output object.

(The object provides output from the mixer, not output from the program. In fact,

it often serves as input to the program.)

An object of this type delivers audio data from the mixer, serving as input to other parts of the

program. This concept is discussed in detail in the lesson entitled Java Sound, Getting Started,

Part 2, Capture Using Specified Mixer.

Audio data input to the program

The data provided by the TargetDataLine object can be pushed into some other program

construct in real time. The actual destination of the audio data can be any of a variety of

destinations such as an audio file, a network connection, or a buffer in memory.

(A sample program in this lesson reads audio data from a TargetDataLine object

and writes it into an audio output file.)

http://www.dickbaldwin.com/
http://www.developer.com/java/other/article.php/1579071
http://www.developer.com/java/other/article.php/1579071

The user interface

When this program is executed, the GUI shown in Figure 1 appears on the screen. As you can

see, this GUI contains two regular buttons:

 Capture

 Stop

Figure 1 Program GUI

In addition, the GUI contains five radio buttons labeled:

 AIFC

 AIFF

 AU

 SND

 WAVE

These are five audio file format types supported by the Java SDK, version 1.4.1. I will have

more to say about these file types later when I discuss the code.

Operation of the program

When the user clicks the Capture button, input data from a microphone is captured and saved in

an audio output file of the type specified by the selected radio button. (Clicking the Capture

button also enables the Stop button and disables the Capture button.)

When the user clicks the Stop button (while recording data), data capture is terminated and the

output file is closed. The file is then suitable for playing back using any standard media player

that will accommodate the specified file format.

Will discuss in fragments

As usual, I will discuss this program in fragments. A complete listing of the program is shown in

Listing 22 near the end of the lesson.

The class named AudioRecorder02

The class definition for the controlling class begins in Listing 1.

public class AudioRecorder02 extends

JFrame{

 AudioFormat audioFormat;

 TargetDataLine targetDataLine;

Listing 1

This class declares several instance variables, which are used later in the program. The two

instance variables shown in Listing 1 are used later to hold references to AudioFormat and

TargetDataLine objects. I will discuss those objects in more detail when we get to the point in

the program where they are used.

The GUI buttons

As you saw in Figure 1, the GUI presents two ordinary buttons, which are used to start and stop

the audio data capture operation. The instance variables in Listing 2 are used to hold references

to JButton objects used for this purpose.

 final JButton captureBtn =

 new

JButton("Capture");

 final JButton stopBtn = new

JButton("Stop");

Listing 2

The radio buttons

Also, as you saw in Figure 1, the GUI presents five radio buttons. Using radio buttons is a little

more complicated than using ordinary buttons.

The normal user expectation for the behavior of radio buttons is that they will be logically

grouped into mutually-exclusive groups (only one button in a group can be selected at any point

in time). This mutually-exclusive behavior is achieved in Java Swing by adding JRadioButton

objects to a ButtonGroup object.

(A somewhat different approach is used to group radio buttons in the Java AWT.)

Not a physical group

Note, however, that adding the buttons to the ButtonGroup object does not create a physical

grouping. Adding the radio buttons to the ButtonGroup object simply creates a mutually-

exclusive logical grouping.

The normal user expectation is also that a mutually-exclusive group of radio buttons will be

physically grouped together in the GUI. This physical grouping requires the use of a container

of some type, such as a JPanel for example.

The instance variables in Listing 3 hold references to:

 One JPanel object

 One ButtonGroup object

 Five JRadioButton objects

 final JPanel btnPanel = new

JPanel();

 final ButtonGroup btnGroup = new

ButtonGroup();

 final JRadioButton aifcBtn =

 new

JRadioButton("AIFC");

 final JRadioButton aiffBtn =

 new

JRadioButton("AIFF");

 final JRadioButton auBtn =//selected

at startup

 new

JRadioButton("AU",true);

 final JRadioButton sndBtn =

 new

JRadioButton("SND");

 final JRadioButton waveBtn =

 new

JRadioButton("WAVE");

Listing 3

Constructing radio buttons

The constructor used for four of the JRadioButton objects in Listing 3 allows the button's label

to be specified when the object is instantiated. The constructor used for the button referred to by

auBtn not only allows for the label to be provided, but also allows for a boolean parameter that

causes the button to be selected when it appears first on the screen.

We will see the code later that uses these instance variables to create a logical group and a

physical group of mutually-exclusive radio buttons.

The main method

The main method for this Java application, shown in Listing 4, is extremely simple.

 public static void main(String

args[]){

 new AudioRecorder02();

 }//end main

Listing 4

The code in the main method simply instantiates an object of the controlling class. Code in the

constructor, some other methods, and some inner classes takes over at that point and provides the

operational behavior of the program.

The constructor

The constructor, which begins in Listing 5, is fairly long. I will break it up and discuss it in

fragments.

 public

AudioRecorder02(){//constructor

 captureBtn.setEnabled(true);

 stopBtn.setEnabled(false);

Listing 5

When the program first starts running, the Capture button is enabled, and the Stop button is

disabled, as shown in Figure 1. As you can see in Listing 5, this is accomplished by initializing

the enabled property on each of the two buttons to values of true and false respectively.

We will see later that when the user clicks the Capture button to cause data capture to begin, the

values of the enabled property are switched to cause the Capture button to become disabled,

and to cause the Stop button to become enabled.

An anonymous listener from an anonymous inner class

You may, or may not be familiar with the rather cryptic programming style shown in Listing

6. The code in Listing 6 instantiates an ActionListener object and registers it on the Capture

button.

 captureBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

ActionEvent e){

captureBtn.setEnabled(false);

 stopBtn.setEnabled(true);

 //Capture input data from

the

 // microphone until the Stop

button is

 // clicked.

 captureAudio();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

Listing 6

If you are already familiar with this programming style, just note that the actionPerformed

method, which is invoked when the user clicks the Capture button,

 Switches the enabled properties of the two buttons.

 Invokes the captureAudio method to cause the audio capture process to begin.

A cryptic programming style

If you are not familiar with this programming style, think of it this way. The code in Listing 6

instantiates an object from an unnamed class, (which implements the ActionListener interface),

and passes that object's reference to the addActionListener method of the Capture button to

register the object as a listener on the button. Whenever the user clicks the Capture button, the

actionPerformed method belonging to the listener object is invoked, behaving as described

above.

Another anonymous listener

The code in Listing 7 uses the same cryptic syntax to instantiate and register an ActionListener

object on the Stop button.

 stopBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

ActionEvent e){

 captureBtn.setEnabled(true);

 stopBtn.setEnabled(false);

 //Terminate the capturing of

input data

 // from the microphone.

 targetDataLine.stop();

 targetDataLine.close();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

Listing 7

The behavior of the actionPerformed event-handler method in this case is to stop and close the

TargetDataLine object.

(Recall that the TargetDataLine object is the object that acquires data from the

microphone and delivers it to the program. We will see how that is accomplished

later.)

The stop method

Here is what Sun has to say about invoking the stop method on a TargetDataLine object.

"Stops the line. A stopped line should cease I/O activity. If the line is open and

running, however, it should retain the resources required to resume activity. A

stopped line should retain any audio data in its buffer instead of discarding it, so

that upon resumption the I/O can continue where it left off, if possible. ... If

desired, the retained data can be discarded by invoking the flush method."

Sun's description seems to be fairly self-explanatory.

It is worth noting that this is the method call that causes the output write method (to be discussed

later) to close the output file.

The close method

Here is what Sun has to say about invoking the close method on a TargetDataLine object.

"Closes the line, indicating that any system resources in use by the line can be

released."

This also seems to be fairly self-explanatory. I will have more to say about the impact of

invoking the stop and close methods later when I discuss the write method used to write the data

to the output audio file.

Put the buttons in the JFrame

The two statements in Listing 8 cause the Capture button and the Stop button to be placed in the

JFrame object. This is straightforward GUI construction code. If you are unfamiliar with it,

you can read about it on my web site.

 getContentPane().add(captureBtn);

 getContentPane().add(stopBtn);

Listing 8

Include the radio buttons in a mutually-exclusive group

http://www.dickbaldwin.com/

The code in Listing 9 causes the five radio buttons to be included in a mutually-exclusive logical

group.

 btnGroup.add(aifcBtn);

 btnGroup.add(aiffBtn);

 btnGroup.add(auBtn);

 btnGroup.add(sndBtn);

 btnGroup.add(waveBtn);

Listing 9

The ButtonGroup class

The variable named btnGroup holds a reference to an object of the ButtonGroup class. Here is

part of what Sun has to say about the ButtonGroup class in general.

"This class is used to create a multiple-exclusion scope for a set of buttons.

Creating a set of buttons with the same ButtonGroup object means that turning

"on" one of those buttons turns off all other buttons in the group.

Initially, all buttons in the group are unselected. Once any button is selected, one

button is always selected in the group."

As a clarification to the above, it is possible to cause a particular button to be initially "on" using

the constructor shown for the AU button in Listing 3. When this program starts, the radio button

labeled AU is initially "on".

The use of the add method shown in Listing 9 causes each button to be included in the group.

It is important to note that simply adding buttons to the ButtonGroup object does not cause

them to be physically grouped in the GUI. Additional effort is required to cause the buttons to

be grouped in a physical sense.

Adding the radio buttons to the JPanel

Physical grouping of the radio buttons is accomplished by the code in Listing 10, which adds the

radio buttons to a JPanel container object.

 btnPanel.add(aifcBtn);

 btnPanel.add(aiffBtn);

 btnPanel.add(auBtn);

 btnPanel.add(sndBtn);

 btnPanel.add(waveBtn);

Listing 10

The default layout manager for a JPanel object is FlowLayout. This causes the radio buttons to

appear in the panel in a row from left to right as shown in Figure 1. Because the panel is

transparent and doesn't have a visible border, only the buttons are visible in Figure 1. The

underlying panel is not visible.

Add the JPanel to the JFrame

The code in Listing 11 causes the panel containing the radio buttons to be placed in the JFrame

GUI object as shown in Figure 1.

 getContentPane().add(btnPanel);

Listing 11

Finish the GUI and make it visible

The code in Listing 12 takes care of a few remaining odds and ends regarding the GUI.

 getContentPane().setLayout(new

FlowLayout());

 setTitle("Copyright 2003,

R.G.Baldwin");

setDefaultCloseOperation(EXIT_ON_CLOSE);

 setSize(300,120);

 setVisible(true);

 }//end constructor

Listing 12

The code in Listing 12 accomplishes the following tasks:

 Set the layout manager on the JFrame GUI object to FlowLayout. This causes the

components to be added to the container from left to right, top to bottom. (Remember

that the JPanel is itself a component that contains the radio buttons, so the panel appears

as a single component in the layout.)

 Set the title on the JFrame GUI object.

 Cause the button with the X in the upper right corner of the JFrame object to terminate

the program when it is clicked.

 Set the size of the JFrame object to 300 pixels by 120 pixels.

 Make the whole thing visible on the screen.

The code in Listing 12 also ends the constructor.

Capture the audio data from the microphone

Recall that the event handler on the Capture button invokes the method named captureAudio to

cause the data capture process to start. The beginning of the captureAudio method is shown in

Listing 13.

 private void captureAudio(){

 try{

 audioFormat = getAudioFormat();

Listing 13

The purpose of the captureAudio method is to capture audio input data from a microphone and

to cause the data to be saved in an audio file of the type specified by the selected radio button in

Figure 1.

Establishing the audio data format

The first step in the capture process is to establish the format of the captured audio data.

The format of the audio data is not the same thing as the format of the audio file. The format of

the audio data establishes how the bits and bytes will be used to represent the values of the audio

data. The format of the audio file establishes how those bits and bytes will be saved in a physical

file on the disk.

While it is probably not true that every file format can accommodate every data format, it is true

that some data formats can be accommodated by more than one file format.

(I plan to publish a future lesson that deals with audio formats and file formats in

detail.)

The getAudioFormat method

The code in Listing 13 invokes the getAudioFormat method in order to establish the audio

format. I'm going to set the discussion of the captureAudio method aside momentarily and

discuss the getAudioFormat method. I will return to a discussion of the captureAudio method

after I explain the getAudioFormat method.

The entire getAudioFormat method is shown in Listing 14.

 private AudioFormat

getAudioFormat(){

 float sampleRate = 8000.0F;

 //8000,11025,16000,22050,44100

 int sampleSizeInBits = 16;

 //8,16

 int channels = 1;

 //1,2

 boolean signed = true;

 //true,false

 boolean bigEndian = false;

 //true,false

 return new AudioFormat(sampleRate,

sampleSizeInBits,

 channels,

 signed,

 bigEndian);

 }//end getAudioFormat

Listing 14

The getAudioFormat method creates and returns an AudioFormat object for a given set of

format parameters.

May not work for you

(Not all audio formats are supported on all systems. If these parameters don't

work well for you, try some of the other allowable parameter values, which are

shown in comments following the declarations.)

An AudioFormat object

As I mentioned earlier, I plan to publish a future tutorial lesson that explains audio formats in

detail. Therefore, this discussion will be very brief.

As you can see, the code in Listing 14 instantiates and returns an object of the AudioFormat

class. The constructor used in Listing 14 to instantiate the object requires the following

parameters:

 sampleRate - The number of samples that will be acquired each second for each channel

of audio data.

 sampleSizeInBits - The number of bits that will be used to describe the value of each

audio sample.

 channels - Two channels for stereo, and one channel for mono.

 signed - Whether the description of each audio sample consists of both positive and

negative values, or positive values only.

 bigEndian - See a discussion of this topic here.

My format

As you can see in Listing 14, my version of the programs samples a single channel 8000 times

per second, dedicating sixteen bits to each sample, using signed numeric values, and not using

BigEndian format. (As mentioned earlier, you may need to use a different format on your

system.)

Default data encoding is linear PCM

http://mindprod.com/jglossendian.html

There are several ways that binary audio data can be encoded into the available bits. The

simplest way is known as linear PCM. By default, the constructor that I used constructs an

AudioFormat object with a linear PCM encoding and the parameters listed above (I will have

more to say about linear PCM encoding and other encoding schemes in future lessons).

A DataLine.Info object

Now that we have the audio format established, let's return to our discussion of the

captureAudio method shown in Listing 15.

//Continuing with the captureAudio

method

 DataLine.Info dataLineInfo =

 new

DataLine.Info(

TargetDataLine.class,

audioFormat);

Listing 15

The next step in the process is to create a new DataLine.Info object that describes the data line

that we need to handle the acquisition of the audio data from the microphone.

As you can see in Listing 15, I used a constructor for this object that requires two parameters.

TargetDataLine Class object

The first parameter required by the constructor is a Class object. In general, a Class object

represents the type of an object. In this case, the parameter represents the type of an object

instantiated from a class that implements the TargetDataLine interface.

According to Sun,

"A target data line is a type of DataLine from which audio data can be read. The

most common example is a data line that gets its data from an audio capture

device. (The device is implemented as a mixer that writes to the target data line.)"

As you can see, TargetDataLine matches our needs exactly.

The audio format parameter

The second parameter required by the constructor in Listing 15 is a specification of the required

audio format. That specification is achieved by passing the AudioFormat object's reference that

was obtained by invoking the getAudioFormat method in Listing 13.

Getting a TargetDataLine object

The next step in the process is to get a TargetDataLine object to handle data acquisition from

the microphone that matches the information encapsulated in the DataLine.Info object

instantiated in listing 15.

This is accomplished in Listing 16 by invoking the static getLine method of the AudioSystem

class, passing the DataLine.Info object as a parameter.

 targetDataLine =

(TargetDataLine)

AudioSystem.getLine(dataLineInfo);

Listing 16

The AudioSystem class

Here is part of what Sun has to say about the AudioSystem class.

"AudioSystem includes a number of methods for converting audio data between

different formats, and for translating between audio files and streams.

It also provides a method for obtaining a Line directly from the AudioSystem

without dealing explicitly with mixers."

The boldface portion of the above quotation is what interests us in this program. According to

Sun, the static getLine method:

"Obtains a line that matches the description in the specified Line.Info object."

Note that the getLine method returns a reference to an object of type Line, which must be

downcast to type TargetDataLine in Listing 16.

Spawn and start a thread to handle the data capture

The code in Listing 17 creates a new Thread object from the CaptureThread class and starts it

running. As you will see later, the behavior of the thread is to capture audio data from the

microphone and to store it in an output audio file.

 new CaptureThread().start();

 }catch (Exception e) {

 e.printStackTrace();

 System.exit(0);

 }//end catch

 }//end captureAudio method

Listing 17

The thread starts running when the user clicks the Capture button in Figure 1, and will continue

running until the user clicks the Stop button in Figure 1.

Once the new thread has been created and started, the code in Listing 17, (which is part of the

captureAudio method), returns control to the actionPerformed event handler method that is

registered on the Capture button.

The captureAudio method ends in Listing 17.

The run method of the CaptureThread class

The CaptureThread class is an inner class. An object of this class is used to perform the actual

capture of the audio data from the microphone and the storage of that data in the output audio

file.

Every thread object has a run method, which determines the behavior of the thread. Listing 18

shows the beginning of the run method of the CaptureThread class, including the declaration

of two instance variables that will be used later.

class CaptureThread extends Thread{

 public void run(){

 AudioFileFormat.Type fileType =

null;

 File audioFile = null;

Listing 18

The output file type

The first step in the execution of the run method is to determine the type of output file specified

by the user.

(Recall that the user specifies a particular audio file type by the selection of a

particular radio button in Figure 1.)

The code in Listing 19 is rather long, but very repetitive and simple.

 if(aifcBtn.isSelected()){

 fileType =

AudioFileFormat.Type.AIFC;

 audioFile = new

File("junk.aifc");

 }else if(aiffBtn.isSelected()){

 fileType =

AudioFileFormat.Type.AIFF;

 audioFile = new

File("junk.aif");

 }else if(auBtn.isSelected()){

 fileType =

AudioFileFormat.Type.AU;

 audioFile = new File("junk.au");

 }else if(sndBtn.isSelected()){

 fileType =

AudioFileFormat.Type.SND;

 audioFile = new

File("junk.snd");

 }else if(waveBtn.isSelected()){

 fileType =

AudioFileFormat.Type.WAVE;

 audioFile = new

File("junk.wav");

 }//end if

Listing 19

Set file type based on selected radio button

This code in Listing 19 examines the radio buttons to determine which radio button was selected

by the user prior to clicking the Capture button. Depending on which radio button was selected,

the code in Listing 19:

 Sets the type of the audio output file.

 Establishes the file name and extension for the audio output file. (With a little extra

programming effort, you could cause the file name to be provided by the user via a

JTextField object in the GUI.)

The AudioFileFormat.Type class

The code in Listing 19 uses constants from the AudioFileFormat.Type class. Here is what Sun

has to say about that class.

"An instance of the Type class represents one of the standard types of audio file.

Static instances are provided for the common types."

The class provides the following common types as public static final variables (constants).

 AIFC

 AIFF

 AU

 SND

 WAVE

(Because I plan to publish a future tutorial lesson that deals with audio data

formats and audio file types in detail, I won't comment further on the five common

types in the above list in this lesson.)

The GUI in Figure 1 has one radio button for each of the file types in the above list. Therefore,

the code in Listing 19 establishes a file type, name, and extension for each of the five common

types.

Not all file types are supported on all systems

I need to point out that not all of the above-listed file types can be created on all systems. For

example, types AIFC and SND produce a "type not supported" error on my system.

Start acquiring audio data from the microphone

The two statements in Listing 20 cause the audio data acquisition process to begin.

 try{

targetDataLine.open(audioFormat);

 targetDataLine.start();

Listing 20

The open method

Here is part of what Sun has to say about the open method of the TargetDataLine interface.

"Opens the line with the specified format, causing the line to acquire any required

system resources and become operational. The implementation chooses a buffer

size ..."

The start method

Note that this refers to the start method of the TargetDataLine object, (not the start method of

the CaptureThread object, which was invoked in Listing 17).

Here is part of what Sun has to say about the start method invoked in Listing 20.

"Allows a line to engage in data I/O. If invoked on a line that is already running,

this method does nothing."

The AudioSystem.write method

Everything discussed so far has been leading up to a discussion of the write method of the

AudioSystem class, which is invoked in the run method of the thread object in Listing 21.

 AudioSystem.write(

 new

AudioInputStream(targetDataLine),

 fileType,

 audioFile);

Listing 21

This is a very significant, very high-level method. However, for such a significant method, the

information provided by Sun is amazingly sparse. There are two overloaded versions of the

write method in Java SDK 1.4.1. Here is what Sun has to say about the version shown in Listing

21.

"Writes a stream of bytes representing an audio file of the specified file type to the

external file provided."

No loops or buffers

To fully appreciate the significance of this method, you should first note that there are no loops

and there is no buffer manipulation involved in the code in Listing 21. Rather, the code in

Listing 21 consists of a single statement that invokes the static write method of the

AudioSystem class.

By way of comparison, Listing 22 shows the code from a similar program in Java Sound, Getting

Started, Part 2, Capture Using Specified Mixer. This program was used to capture microphone

data and to store that data in an object of type ByteArrayOutputStream (a memory buffer).

while(!stopCapture){

 //Read data from the internal buffer

of

 // the data line.

 int cnt =

targetDataLine.read(tempBuffer,

 0,

tempBuffer.length);

 if(cnt > 0){

 //Save data in output stream

object.

byteArrayOutputStream.write(tempBuffer,

 0,

 cnt);

 }//end if

http://www.developer.com/java/other/article.php/1579071
http://www.developer.com/java/other/article.php/1579071

 }//end while

Listing 22

More complex code from earlier program

As you can see, the code in Listing 22 from the earlier program was required to loop while

monitoring for a signal to stop data capture. In addition, the code was required to invoke

interlaced read and write methods, while dealing with the internal buffer of the

TargetDataLine object and a temporary buffer object as well.

All of these details are handled automatically by the single invocation of the write method in

Listing 21.

Features and characteristics of the write method

In addition to its other features, the AudioSystem.write method knows how to detect that the

stop method has been invoked on the TargetDataLine object (see Listing 7) and to close the

output file when that happens. Therefore, it was not necessary for me to monitor for a signal to

stop data capture and close the output file.

The required parameters for the write method in Listing 21 are:

 An audio input stream of type AudioInputStream containing audio data to be written to

the file.

 The type of audio file to write, specified as type AudioFileFormat.Type

 The external file to, which the data should be written, specified as type File.

The second two parameters were already available, having been created earlier. However, a little

extra work was required to create the first parameter.

The AudioInputStream parameter

According to Sun,

"An audio input stream is an input stream with a specified audio format and

length."

As of Java SDK 1.4.1, the AudioInputStream class provides the two constructors shown in

Figure 2.

AudioInputStream(InputStream stream

 AudioFormat format,

 long length)

This constructor constructs an audio

input stream that has the requested

format and length in sample frames,

using audio data from the specified

input stream.

AudioInputStream(TargetDataLine line)

Constructs an audio input stream that

reads its data from the target data

line indicated.

Figure 2 Constructors for the

AudioInputStream class

Since I already had a TargetDataLine object, I elected to use the second constructor to create

the AudioInputStream object required for the first parameter of the write method in Listing 21.

End of the run method and end of the class definition

Except for a catch block, that ends the definition of the run method of the CaptureThread class

that begins in Listing 18.

That is also the end of the CaptureThread class, and the end of the program.

You can view a complete listing of the program in Listing 22 near the end of the lesson.

Run the Program

At this point, you may find it useful to compile and run the program shown in Listing 22 near the

end of the lesson.

Not all file types and data formats are supported

As I mentioned earlier, not all file types can be created on all systems. For example, types AIFC

and SND produce a "type

not supported" error on my system.

Also, not all data formats are supported on all systems. If the format parameters that I used in

Listing 14 don't work well for you, try some of the other allowable parameters, which are listed

in comments following the variable declarations.

The program GUI at startup

When you start the program, the GUI shown in Figure 1 should appear on your screen. Select an

audio file type by selecting one of the radio buttons. Then click the Capture button and start

talking into the microphone. When you have recorded enough audio data, click the Stop button.

An output audio file should be created

At that point in time, an audio file named junk.xx should be in the folder containing the

compiled version of your program. The file extension will depend on the type of audio file you

selected with the radio buttons before you clicked the Capture button (see Listing 19 for an

identification of the possible extensions).

Play back the audio file

You should be able to play the audio file back using a standard media player such as Windows

Media Player.

If you run the program two times in succession for the same audio file type, be sure to release the

old file from the media player before attempting to create a new file with the same name and

extension. Otherwise, it won't be possible to create the new file with the same name and

extension, and you will get an error message.

If you don't hear anything during playback, you may need to increase your speaker volume.

Summary

In this lesson, I showed you how to use the Java Sound API to capture audio data from a

microphone and how to save that data in an audio file type of your choosing.

Complete Program Listing

A complete listing of the program is shown in Listing 22.

/*File AudioRecorder02.java

Copyright 2003, Richard G. Baldwin

This program demonstrates the capture of audio

data from a microphone into an audio file.

A GUI appears on the screen containing the

following buttons:

 Capture

 Stop

In addition, five radio buttons appear on the

screen allowing the user to select one of the

following five audio output file formats:

 AIFC

 AIFF

 AU

 SND

 WAVE

When the user clicks the Capture button, input

data from a microphone is captured and saved in

an audio file named junk.xx having the specified

file format. (xx is the file extension for the

specified file format. You can easily change the

file name to something other than junk if you

choose to do so.)

Data capture stops and the output file is closed

when the user clicks the Stop button.

It should be possible to play the audio file

using any of a variety of readily available

media players, such as the Windows Media Player.

Not all file types can be created on all systems.

For example, types AIFC and SND produce a "type

not supported" error on my system.

Be sure to release the old file from the media

player before attempting to create a new file

with the same extension.

Tested using SDK 1.4.1 under Win2000

**/

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import javax.sound.sampled.*;

public class AudioRecorder02 extends JFrame{

 AudioFormat audioFormat;

 TargetDataLine targetDataLine;

 final JButton captureBtn =

 new JButton("Capture");

 final JButton stopBtn = new JButton("Stop");

 final JPanel btnPanel = new JPanel();

 final ButtonGroup btnGroup = new ButtonGroup();

 final JRadioButton aifcBtn =

 new JRadioButton("AIFC");

 final JRadioButton aiffBtn =

 new JRadioButton("AIFF");

 final JRadioButton auBtn =//selected at startup

 new JRadioButton("AU",true);

 final JRadioButton sndBtn =

 new JRadioButton("SND");

 final JRadioButton waveBtn =

 new JRadioButton("WAVE");

 public static void main(String args[]){

 new AudioRecorder02();

 }//end main

 public AudioRecorder02(){//constructor

 captureBtn.setEnabled(true);

 stopBtn.setEnabled(false);

 //Register anonymous listeners

 captureBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 captureBtn.setEnabled(false);

 stopBtn.setEnabled(true);

 //Capture input data from the

 // microphone until the Stop button is

 // clicked.

 captureAudio();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 stopBtn.addActionListener(

 new ActionListener(){

 public void actionPerformed(

 ActionEvent e){

 captureBtn.setEnabled(true);

 stopBtn.setEnabled(false);

 //Terminate the capturing of input data

 // from the microphone.

 targetDataLine.stop();

 targetDataLine.close();

 }//end actionPerformed

 }//end ActionListener

);//end addActionListener()

 //Put the buttons in the JFrame

 getContentPane().add(captureBtn);

 getContentPane().add(stopBtn);

 //Include the radio buttons in a group

 btnGroup.add(aifcBtn);

 btnGroup.add(aiffBtn);

 btnGroup.add(auBtn);

 btnGroup.add(sndBtn);

 btnGroup.add(waveBtn);

 //Add the radio buttons to the JPanel

 btnPanel.add(aifcBtn);

 btnPanel.add(aiffBtn);

 btnPanel.add(auBtn);

 btnPanel.add(sndBtn);

 btnPanel.add(waveBtn);

 //Put the JPanel in the JFrame

 getContentPane().add(btnPanel);

 //Finish the GUI and make visible

 getContentPane().setLayout(new FlowLayout());

 setTitle("Copyright 2003, R.G.Baldwin");

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 setSize(300,120);

 setVisible(true);

 }//end constructor

 //This method captures audio input from a

 // microphone and saves it in an audio file.

 private void captureAudio(){

 try{

 //Get things set up for capture

 audioFormat = getAudioFormat();

 DataLine.Info dataLineInfo =

 new DataLine.Info(

 TargetDataLine.class,

 audioFormat);

 targetDataLine = (TargetDataLine)

 AudioSystem.getLine(dataLineInfo);

 //Create a thread to capture the microphone

 // data into an audio file and start the

 // thread running. It will run until the

 // Stop button is clicked. This method

 // will return after starting the thread.

 new CaptureThread().start();

 }catch (Exception e) {

 e.printStackTrace();

 System.exit(0);

 }//end catch

 }//end captureAudio method

 //This method creates and returns an

 // AudioFormat object for a given set of format

 // parameters. If these parameters don't work

 // well for you, try some of the other

 // allowable parameter values, which are shown

 // in comments following the declarations.

 private AudioFormat getAudioFormat(){

 float sampleRate = 8000.0F;

 //8000,11025,16000,22050,44100

 int sampleSizeInBits = 16;

 //8,16

 int channels = 1;

 //1,2

 boolean signed = true;

 //true,false

 boolean bigEndian = false;

 //true,false

 return new AudioFormat(sampleRate,

 sampleSizeInBits,

 channels,

 signed,

 bigEndian);

 }//end getAudioFormat

//===//

//Inner class to capture data from microphone

// and write it to an output audio file.

class CaptureThread extends Thread{

 public void run(){

 AudioFileFormat.Type fileType = null;

 File audioFile = null;

 //Set the file type and the file extension

 // based on the selected radio button.

 if(aifcBtn.isSelected()){

 fileType = AudioFileFormat.Type.AIFC;

 audioFile = new File("junk.aifc");

 }else if(aiffBtn.isSelected()){

 fileType = AudioFileFormat.Type.AIFF;

 audioFile = new File("junk.aif");

 }else if(auBtn.isSelected()){

 fileType = AudioFileFormat.Type.AU;

 audioFile = new File("junk.au");

 }else if(sndBtn.isSelected()){

 fileType = AudioFileFormat.Type.SND;

 audioFile = new File("junk.snd");

 }else if(waveBtn.isSelected()){

 fileType = AudioFileFormat.Type.WAVE;

 audioFile = new File("junk.wav");

 }//end if

 try{

 targetDataLine.open(audioFormat);

 targetDataLine.start();

 AudioSystem.write(

 new AudioInputStream(targetDataLine),

 fileType,

 audioFile);

 }catch (Exception e){

 e.printStackTrace();

 }//end catch

 }//end run

}//end inner class CaptureThread

//===//

}//end outer class AudioRecorder02.java

Listing 22

Copyright 2003, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and private

consultant whose primary focus is a combination of Java, C#, and XML. In addition to the many

platform and/or language independent benefits of Java and C# applications, he believes that a

mailto:Baldwin@DickBaldwin.com

combination of Java, C#, and XML will become the primary driving force in the delivery of

structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

http://www.dickbaldwin.com/
mailto:Baldwin@DickBaldwin.com

