
An HSB Color-Editing Program for Digital Photos

Learn more about the HSB color model and how to use that model to adjust the hue,
saturation, and brightness of your digital photos.

Published: March 19, 2009
By Richard G. Baldwin

Java Programming Notes # 357

 Preface
o General
o What you have learned from earlier lessons
o What you will learn in this lesson
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing
o The HSB color model

 The Hue slider
 The Sat slider
 The Bright slider

 Preview
 Discussion and sample code

o The program named FiveSliderTemlate01
o The program named HsbEdit02

 Run the programs
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

Preface

General

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

mailto:Baldwin@DickBaldwin.com

 Edit the color of your digital photos
 Blur, soften, or sharpen your digital photos.
 Remove redeye from your digital photos.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, and other filtering operations on images.
 Insert animated cartoon characters into videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

What you have learned from earlier lessons

If you have studied the earlier lessons in this series, you have learned:

 How to download, install, and test a Java multimedia library from Georgia
Institute of Technology.

 How to edit the pixels in an image on a pixel-by-pixel basis using a program
written entirely in Java.

 Many aspects of image processing, including color distance, projecting 3D
coordinates onto a 2D display plane, and edge detection.

 How to write an animated flocking program.
 How to sharpen or soften your digital photos.
 What the HSB color model is all about.

What you will learn in this lesson

You will learn how to use the HSB color model to adjust the hue, saturation, and
brightness of your digital photos.

You will also learn about a new template program that I have developed that makes it
much easier for you to write a variety of different types image-processing programs.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Sample screen output from the program named HsbEdit02.
 Figure 2. The color wheel.
 Figure 3. Pure colors versus angles on the color wheel.
 Figure 4. Example of color shifting using the Hue slider.
 Figure 5. Comparison for different saturation factors.
 Figure 6. Another saturation demonstration.

 Figure 7. De-saturating an image.
 Figure 8. The effect of the brightness slider.
 Figure 9. Typical screen display from the program named FiveSliderTemplate01.

Listings

 Listing 1. Beginning of the program named FiveSliderTemplate01.
 Listing 2. Set the minimum, maximum, and initial value for each slider.
 Listing 3. Set the tick spacing on the sliders.
 Listing 4. Set the labels to the left of each slider.
 Listing 5. Exclude all three buttons from the GUI.
 Listing 6. Exclude some, but not all of the buttons from the GUI.
 Listing 7. Set the labels on the buttons.
 Listing 8. Set the label for the text field.
 Listing 9. Set the default input file name.
 Listing 10. Program the ChangeListener on the sliders.
 Listing 11. Program the event handlers.
 Listing 12. The method named handleSliderABandC.
 Listing 13. Source code for the program named FiveSliderTemplate01.
 Listing 14. Source code for the program named HsbEdit02.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

The HSB color model

As I explained in an earlier lesson titled The HSB Color Model (see Resources), color is
tricky. Not only do different individuals perceive color in different ways, the same color

http://www.dickbaldwin.com/toc.htm

often looks different to the same person when viewed under different lighting conditions,
and often looks different when viewed on different computer monitors.

There are several different models that are used to describe color in the computer
world. Fortunately, we have well-defined mathematical ways to define color.

Won't make you an expert

Even if I were qualified to do so, (which I'm not), I didn't try to make you a digital color
expert in the earlier lesson. Instead, I briefly introduced you to some of the different
color models that are in common use today. Then I tried to teach you enough about the
HSB color model that you can understand what you are doing when you use the
program that I will explain in this lesson (or any other software based on HSB) to edit
your digital photographs.

What are a color model and a color space?

As you learned in the earlier lesson, according to Wikipedia, "A color model is an
abstract mathematical model describing the way colors can be represented as multiples
of numbers, typically as three or four values or color components. When this model is
associated with a precise description of how the components are to be interpreted
(viewing conditions, etc.), the resulting set of colors is called color space."

Different color models

Several different color models are commonly used to represent colors in a
computer. These include:

1. The hue, saturation, lightness (HSL) model.
2. The hue, saturation, value (HSV) model.
3. The hue, saturation, brightness (HSB) model.
4. The red, green, blue (RGB) model (with a couple of variations).

I am assuming that you are already well versed in the use of the basic RGB color
model. In this lesson, we will be concerned mainly with model 3 in the above list (HSB).

Why do we need HSB when we already have RGB?

In case you missed this explanation in the earlier lesson, I will repeat it here for your
convenience.

The RGB color model is convenient for storing pixel-color data in a computer. In
addition, it maps very well into the way that color is displayed on a color monitor where
each pixel consists of three tiny dots, each of which can be caused to glow in red,
green, or blue.

http://en.wikipedia.org/wiki/Color_model
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Color_space

However, it does not map very well into the way we think and talk about color. For
example, it is unlikely that you would go into a clothing store and tell the clerk that you
would like to see a jacket with a red color value of 0x96 (hex), a green color value of
0x48, and a blue color value of 0x1B. (Well -- if you are a true computer geek you
might, but the clerk probably wouldn't know what you
are talking about.)

Burnt orange

On the other hand, you might very well describe the
color as orange, not too bright, and not too vivid or
bold. In that case, you would be describing the color
using parameters that are similar to the parameters in
the HSB color model.

To a first approximation, orange corresponds to hue,
vivid or bold corresponds to saturation, and bright corresponds to brightness. In other
words, the HSB color model is closer to the way we think and talk about colors than the
RGB model.

How did I create burnt orange?

In case you are wondering how I came up with the RGB formula for a color that is very
close to UT burnt orange (see sidebar), I used the program that I explained in the earlier
lesson and adjusted the sliders to produce a color that is orange, not too bright, and not
too vivid or bold. Then I made some minor adjustments to the positions of the sliders to
produce a color that is very close to the color on a University of Texas coffee mug.

Sample screen output

When you run the program named HsbEdit02 that I will explain in this lesson, if you set
the sliders to the same positions shown in Figure 1, you should get a screen output
similar to that shown in Figure 1. (The beach scene shown in Figure 1 is available as a
jpeg file in Ericson's multimedia library.)

Figure 1. Sample screen output from the program named HsbEdit02.

Burnt orange
If you were a University of

Texas sports fan living in my

home town of Austin, TX, you

could simply tell the clerk that

you would like to see a Texas

burnt orange jacket and the

clerk would know exactly what

color you are seeking.

The HSB color values were modified

For every pixel in the beach image shown in Figure 1, the hue (color) was shifted by
180-degrees. The saturation was increased by a factor of 2.5, and the brightness was
unchanged.

Sliders for hue, saturation, and brightness

As you can see, there are three sliders on the GUI in Figure 1. These sliders make it
possible for you to adjust the hue, saturation, and brightness of every pixel in the image
displayed in the top of Figure 1.

The image shown in the top changes in real time as you move the sliders so that you
can see the results of your changes immediately.

My next challenge is to help you understand what happens when you move the sliders
and adjust the HSB properties of the pixels in the image.

The Hue slider

You learned about the color wheel and the relationship of the color wheel and the hue
value in the earlier lesson. We will reinforce what you learned in that lesson using the

material in this lesson. A color wheel, produced as the top surface of the HSB cone
model in the earlier lesson is shown in Figure 2.

Figure 2. The color wheel.

Allowable HSB parameter values

With the Java API, the value for hue can be any value of type float. The value for
saturation must be a float value between 0.0 and 1.0. The value for brightness must
also be a float value between 0.0 and 1.0.

Changing the HSB property values

The purpose of the sliders in Figure 1 is to make it possible for you to change the hue,
saturation, and brightness values for every pixel in the image being processed. When
you move a slider, the HSB properties for every pixel in the image are changed in the
same way.

A disclaimer

I am definitely not an expert in this area. The explanations that follow are based on
what I have learned and concluded from reading what numerous others have written on
the web.

Let brightness and saturation be 1.0

Assume that for a given pixel, the brightness value is 1.0. That being the case, the
visible color of the pixel must be one of the colors shown in the color wheel of Figure
2. (I explained the reasons for that conclusion in the earlier lesson and will explain
further in conjunction with my cone discussion later.)

Assume that the saturation value for the pixel is also 1.0. In that case, the color of the
pixel must be one of the colors on the outer circumference of the color wheel shown in
Figure 2. These are often referred to as the pure colors. (I will explain the reason for
this later as well.)

Hue is often described in angular degrees

Pretend that the color wheel in Figure 2 is the face of a clock for which the "little hand"
has been broken off. Assume that the length of the remaining "big hand" is exactly
equal to the radius of the color wheel. A hue value of zero degrees (or 360 degrees) is
represented by the big hand pointing exactly to the three-o'clock position.

If you look very carefully at the color wheel in Figure 2, you can see a white radial line in
the middle of the red area pointing exactly at the three-o'clock position. This represents
a hue value of zero degrees and also represents a hue value of 360 degrees. If the
white line was pointing directly at the six-o'clock position, that would represent a hue
value of 45 degrees. You should be able to extrapolate from there.

The hue slider in Figure 1 is calibrated to extend from 0 to 360. Although there is no
label that says so, the scale on that slider is intended to represent degrees from 0 to
360 inclusive. As the slider is moved from 0 to 360, our imaginary big hand would make
one complete revolution beginning and ending at the three-o'clock position.

Pure colors versus angles on the color wheel

Getting back to the color wheel in Figure 2, the table in Figure 3 shows some sample
values of the relationship between the hue angle in degrees, the pure color on the
circumference of the color wheel, and the RGB representation of that color in
hexadecimal.

Figure 3. Pure colors versus angles on the color wheel.

Angle Color RGB value

0 red FF0000

60 yellow FFFF00

120 green 00FF00

180 cyan 00FFFF

240 blue 0000FF

300 magenta FF00FF

360 red FF0000

The colors are cyclic

As you can see from Figure 2, the colors are cyclic, starting at red for zero degrees and
ending up back at red for 360 degrees.

For example, assume that you have a pixel with a hue of 60 degrees, a saturation value
of 1.0, and a brightness value of 1.0 (yellow). If you add 60 degrees to the hue value,
the pixel will turn green. (See Figure 4.) If you add 300 degrees to the hue, the pixel
will turn red.

If you add 360 degrees, the color of the pixel won't change, but if you add 420 degrees,
it will turn green, just as if you had added 60 degrees.

Adding a hue value that is not a multiple of 60 degrees will cause the color to change to
one of the other colors on the circumference of the color wheel in Figure 2.

Methods of the Color class

The Color class has a static method that can be used to convert the three values of a
color in the HSB model to the three values required by the RGB model. Here is some of
what Sun has to say about the requirements for the three HSB values in order to
successfully make the conversion.

"The saturation and brightness components should be floating-point
values between zero and one (numbers in the range 0.0-1.0).

The hue component can be any floating-point number. The floor of this
number is subtracted from it to create a fraction between 0 and 1. This
fractional number is then multiplied by 360 to produce the hue angle in the
HSB color model."

Note in particular the handling of the hue component value. Assume, for example that
the method is presented with a hue value of 35.5. The method will first subtract 35,
resulting in a fractional hue value of 0.5. Then it will multiply that value by 360 to
convert the fractional value into degrees. For the case of a hue value of 35.5, this will
result in a hue value of 180 degrees. Using that value, it will then proceed to convert
from HSB to RGB.

Example of color shifting using the hue slider

Figure 4 shows five examples of what happens to colored pixels when subjected to
color shifting through the hue slider.

Figure 4. Example of color shifting using the Hue slider.

No change in saturation and brightness values

In Figure 1, the pointers on the saturation and brightness sliders were both set to
100. The saturation and brightness values of each pixel were being multiplied by
100/100.0 or 1.0. In that case, the saturation and brightness values weren't being
modified. That was also the case for all six images in Figure 4.

Varying the hue

Going from left to right, top to bottom, the pointer on the hue slider was set to the
following values when the six consecutive screen shots were taken:

 0 degrees
 60 degrees
 120 degrees
 180 degrees
 240 degrees
 300 degrees

Track a single pixel

If you pick any pixel in the upper-left image and add an angular value to its hue value,
the effect on the color of the pixel is the same as keeping that pixel the same distance
from the center and rotating it around the center by that number of degrees in a counter-
clockwise direction.

For example, if you choose the pixel at the very bottom of the lower-case L in the word
Baldwin in the upper-left image, applying a 180-degree color shift by moving the hue
pointer to the 180-degree position would cause its color to change to the color of the
pixel in exactly the same location in the lower-left image in Figure 4. Moving the slider

to the 300-degree position would cause the color of the pixel to change to the color of
the pixel in exactly the same location in the lower-right image.

Changing colors with the sliders

Therefore, if a pixel has one of the colors on the color wheel shown in Figure 2, you can
change the color of that pixel to any color in the color wheel that is the same distance
from the center of the wheel by keeping the saturation and brightness sliders at 100 and
manipulating only the hue slider.

You can change it to other colors by moving either or both of the saturation and
brightness sliders.

The Sat slider

Saturation may be the most difficult of the three HSB properties to understand.

Comparison for different saturation factors

At this point, I will show you the same image that you saw in Figure 1 with for some
different slider positions. The top image in Figure 5 shows the image with the hue slider
set to 0, the saturation slider set to 100, and the brightness slider set to 100. This is the
raw image with no color modifications.

Figure 5. Comparison for different saturation factors.

Increase the saturation by a factor of 2.5

The middle image in Figure 5 shows the effect of moving the pointer on the saturation
slider to 250 without changing the hue slider or the brightness slider. This caused the
saturation value for every pixel to be 2.5 times greater than the original value. (If the
result was greater than 1.0, it was clipped to 1.0.)

The effect of the hue slider

Note that the saturation and brightness sliders in the middle image in Figure 5 were the
same as the values for those two sliders in Figure 1. Only the position of the hue slider
was different. By comparing the image in Figure 1 with middle image in Figure 5, you
can see the effect of using the hue slider to shift the color for the same values of
saturation and brightness. Applying a 180 degree color shift in Figure 1 caused the blue
sky in Figure 5 to become red-orange in Figure 1 and caused the sand color in Figure 5
to become blue in Figure 1. The ocean color in Figure 5 turned red in Figure 1, etc.

Result of saturation change only

By comparing the middle image with the top image in Figure 5, you can see the effect of
using the saturation slider to increase the saturation values of the pixels in the image
without changing the hue or the brightness.

The bottom image in Figure 5 shows the effect of moving the pointer on the saturation
slider to 400 without changing the hue slider or the brightness slider.

By comparing the three images going from top to bottom in Figure 5, you can see the
effect of increasing the saturation factor from 1.0 to 2.5 and then to 4.0. (My guess is
that the saturation value for many of the pixels in the bottom image exceeded its
maximum allowable limit and was therefore clipped to the limit of 1.0.)

Let's get some help

At this point I'm going to enlist some help from another excellent website. One of the
best explanations of HSV (and hence HSB) that I have found is on the web page titled
Color Principles - Hue, Saturation, and Value. I call your attention to Figure 9 on that
page.

Think of the HSB color model as a cone

The HSB color model can be described as a cone with the pointed end at the bottom as
suggested by Figure 9 on that web page. Although that author shows only a small
sampling of the colors on the top surface of the cone, that surface consists of the entire
color wheel shown in Figure 2. Note that in both cases, the center of the wheel is white
and the pure colors described earlier exist at the outer circumference of the wheel.

Many colors are possible

Every possible HSB color value is represented by a point somewhere within the volume
of or on the surface of that cone. For example, if the HSB color value for brightness is
zero, the color is black and is represented by the single point that constitutes the very
bottom of the cone. (It doesn't matter what the hue and saturation values are if the
brightness is zero.)

If the color values for saturation and brightness are 0.0 and 1.0 respectively, the color is
white and is represented by the point at the center of the top surface of the cone. In this
case, it doesn't matter what the value for hue is. If the saturation value is 0.0, the color
of the pixel will range from white to black with shades of gray in between depending on
the value of brightness.

Three dimensions

The HSB color model has three dimensions:

http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html#(HSV)

 Hue - rotation around an invisible line that goes from the point at the bottom to
the center of the wheel at the top.

 Saturation - distance outward from that invisible line.
 Brightness - distance from the single point at the bottom of the cone upward

along that invisible line.

What do the sliders do?

When we use the three sliders in Figure 1 to change the hue, saturation, and brightness
of a pixel, we cause the program to behave in the following ways:

 Hue slider: Moving the hue slider rotates the color of the pixel around the center
line at a fixed distance from that line on a fixed horizontal plane within the cone.

 Saturation slider: Moving the saturation slider moves the color of the pixel
along a radial line on the surface of that horizontal plane, from the center line to
the outer surface of the cone.

 Brightness slider: Moving the brightness slider moves the horizontal plane on
which the color resides up and down along the center line.

Explained another way

In other words:

 The brightness value of the color determines the vertical elevation of the
horizontal plane on which the color resides. When the brightness value is 0.0,
the horizontal plane degenerates to a single black point at the bottom of the
cone. When the brightness value is 1.0, the horizontal plane is at the upper limit
of the cone. In other words, in that case, the horizontal plane is the top surface
of the cone.

 The saturation value determines the distance of the color value from the center of
the cone with 0.0 being at the center and 1.0 being at the surface of the cone.

 The hue value determines the angle, relative to an angle of zero degrees at pure
red, of a radial line on the horizontal plane on which the color value resides.

Changing the elevation of the plane

By moving the brightness slider in Figure 1, you change the vertical elevation of the
horizontal plane for the color of each pixel in the image. (Note that the colors of
individual pixels are not necessarily on the same horizontal plane.)

The brightness value for each pixel is multiplied by a factor ranging from 0.0 to
2.0. (The multiplicative factor is 1.0 when the pointer is at the 100 position.) If the
multiplication results in a new brightness value greater than 1.0, the value is simply set
to 1.0.

Changing the distance from the center

By moving the saturation slider in Figure 1, you change the distance from the center of
the cone for the color of each pixel in the image. (Note that the colors of individual
pixels are not necessarily the same distance from the center.)

The saturation value for each pixel is multiplied by a factor ranging from 0.0 to 4.0. (The
multiplicative factor is 1.0 when the pointer is at the 100 position.) Once again, if the
multiplication results in a new saturation value greater than 1.0, the value is simply set
to 1.0.

Changing the hue angle

By moving the hue slider in Figure 1, you change the angular position of a radial line on
which the color for each pixel resides. This is an additive change. If the addition results
in a new hue value greater than 360 degrees, the value effectively starts over at zero
degrees. In other words, a hue value of 370 degrees is equivalent to a hue value of 10
degrees.

Another saturation demonstration

Figure 6 shows another example of moving the saturation slider without changing the
hue or brightness sliders. In this case, the hue slider was set to 0 and the brightness
slider was set to 100. The saturation slider was set to 100 (a multiplicative factor of 1.0)
for the top image in Figure 6, so that the colors in the image were not being modified by
the program.

Figure 6. Another saturation demonstration.

Colors at nine points along the radial line

The top image in Figure 6 shows the colors at nine points along a radial line from the
center to the outer edge of the cone on a fixed horizontal plane. The angular position of
that line was close to zero. As you can see, this resulted in the points having the color
red. The leftmost square shows the color at the center of the cone (white) and the
rightmost square shows the color at the surface of the cone.

Changing the saturation values

The bottom three images in Figure 6 show the effect of positioning the slider at 200,
300, and 400 respectively. The color of the rightmost square was fully saturated at the
beginning, meaning that its color was at the surface of the cone with a saturation value
at or near 1.0. Multiplying this value by factors of 2, 3, and 4 simply resulted in products
that exceeded the allowable limit of 1.0, so the new value was set to 1.0. Therefore,
there is no visible color change as the eye progresses down the right side of Figure 6.

Zero multiplied by any number is still zero

The color of the leftmost square was at the center of the cone at the beginning meaning
that it had a saturation value at or near 0.0. Multiplying this value by factors of 2, 3, and
4 simply resulted in a product at or near zero, so there is no visible color change as the
eye progresses down the left side of Figure 6.

The squares in the middle

The colors of the squares between the ends of the top image in Figure 6 had saturation
values greater than 0.0 and less than 1.0. Multiplying these values by factors of 2, 3,
and 4 resulted in larger saturation values. In some cases, the new value probably
exceeded the limit and was set to the limit at 1.0. As a result, the colors of these
squares approach, and sometimes reach the fully-saturated level as the eye progresses
down Figure 6. The multiplication process moves the color value further from the center
of the cone and closer to the edge of the cone.

De-saturating an image

Figure 7 shows the effect of setting the saturation slider to 100, 50, and 0 respectively
for the beach scene going from top to bottom. The hue slider was set to 0 and the
brightness slider was set to 100 in all three cases.

Figure 7. De-saturating an image.

Reducing the saturation values for the pixels

The saturation value for every pixel was multiplied by 0.5 in the middle image in Figure
7, and was multiplied by zero in the bottom image. (The bottom image would probably
be referred to as a de-saturated image, which is a grayscale image.)

Vivid colors

A comparison of the bottom image in Figure 7 with the bottom image in Figure 5 should
help you to understand why I used the term vivid or bold earlier. The colors in the
bottom image of Figure 5 are certainly more vivid than the colors in the bottom image of
Figure 7.

The Bright slider

Brightness is probably the easiest of the HSB properties to understand.

The four images in Figure 8 show the beach scene with the hue slider set to 0, the
saturation slider set to 100, and the brightness slider set to values of 50, 100, 150, and
200 respectively going from top to bottom.

Figure 8. The effect of the brightness slider.

Making things brighter

As you can see, the picture becomes brighter and brighter as the position of the
brightness slider is increased. The brightness value for every pixel is multiplied by a
factor derived from the position of the slider. The multiplicative factors for the four slider
positions shown in Figure 8 were 0.5, 1.0, 1.5, and 2.0.

As with saturation, when the multiplicative product exceeds 1.0, it is simply set to 1.0. It
appears that may have happened quite often for the bottom image in Figure 8.

A black rectangle

I elected not to show you the result for the brightness slider set to 0, because it is
nothing but a black rectangle, corresponding to the bottom of the cone that I described
earlier.

Preview

Two programs

I will present and explain two different programs in this lesson. In the first program
named FiveSliderTemplate01, I will introduce you to a new template program that is
designed to make it easier for you to write programs that use multiple sliders and
buttons to edit digital photos.

In the second program, named HsbEdit02, I will show you how to begin with the
template program described above and write a program to do the kind of HSB color
editing that I explained in the previous section.

Discussion and sample code

The program named FiveSliderTemplate01

I showed you how to write a template program for editing digital photos in the earlier
lesson titled A Slider-Controlled Softening Program for Digital Photos (see
Resources). That program was limited to a single slider.

A major upgrade

This program is a major upgrade to the earlier program. This program makes it easy for
you to create and use up to five sliders, three buttons, and their associated labels. In
addition, the structure of this program makes it much easier for you to configure the
sliders, the buttons, and the labels.

Default screen output

As shown in Figure 9, the program produces a display window for the Picture object
being processed plus the following components with associated labels in a GUI object
that is separate and distinct from the display window:

 A text field for entry of an input image file and pathname.
 A Write button for writing backup files during processing.
 Up to five general-purpose sliders with labels and registered change listeners.
 Up to three general-purpose buttons with registered action listeners.
 A shutdown procedure that writes a final output image file.

Figure 9. Typical screen display from the program named FiveSliderTemplate01.

Components are easy to eliminate

Any of the general-purpose sliders and buttons that aren't needed can be eliminated
from the GUI by setting the values of certain constants at the beginning of the program
to false.

Concentrate on image-processing logic

Ideally, by using this template, you will be able to concentrate on image-processing
logic and not have to deal with the programming details involved in the overall program
structure.

The template program requires access to Ericson's multimedia library.

Execution speed and smoothness

The speed and smoothness of programs that you write using this template program will
depend on a combination of your programming skills and the speed of your
computer. Note, however that this template program was designed to teach
programming and image processing concepts. It was not designed to compete on a
speed or convenience basis with commercially-available photograph processing
programs such as Adobe's Photoshop Elements.

Backup image files

A backup file containing the current state of the display is written into the directory from
which the original image file was read each time the user clicks the Write button. The
five most recent backup files are saved. The backup files are written in bmp format
regardless of the format of the original image file in order to avoid JPEG compression
and preserve picture quality. The names of the backup files are the same as the name
of the original image file except that BAKn is inserted immediately ahead of the
extension. The term n in the file name is a digit ranging from 0 to 4. The value of n rolls
over and starts back at 0 when it exceeds 4.

Input image files

Input files of type jpg, bmp, and png are supported. If the input file is in the same
directory as the program code, only the name and extension must be entered into the
text field. Otherwise, a complete path and file name with extension must be entered.

Construction of the GUI

The GUI initially appears in the upper-left corner of the screen. At this point, the sliders
and the buttons are all disabled. When the user enters the name of the input file, a
display of the image contained in that file appears in the upper-left corner of the screen
and the GUI is relocated to a position immediately below the display.

When the GUI is relocated, the sliders and the buttons are all enabled and the text field
is disabled. Also, when the GUI is relocated, the width of the GUI is changed to match
the width of the display unless the width of the display is less than the preferred width of
the GUI. In that case, the GUI appears at its preferred width.

A demo program

In addition to serving as a template for future programs, this program also demonstrates
the use of four sliders in a reasonably meaningful way. The fifth slider and the three
buttons are demonstrated in a somewhat trivial way. (They simply cause the computer
to beep when they fire an event to prove that they are alive.)

Configuring the GUI components

For this demonstration program, each slider ranges from 0 to 100 with the initial position
of the slider at 100. Many aspects of the configuration of the GUI, (including the
minimum, maximum, and initial position of each slider) can be established by changing
the values of constants at the beginning of the program. For example, by setting some
of the boolean constants to false, you can eliminate any combination of the sliders and
buttons from the GUI. (You cannot eliminate the Write button using this approach.)

Various text and label values can also be configured in a similar manner. Note,
however, that configuring the GUI by setting the above-mentioned boolean constants to
false doesn't prevent the objects from being instantiated. It simply prevents them from
becoming part of the GUI. In a production program, you would probably want to
eliminate the instantiation as well to conserve resources.

Behavior of the demo program

This demonstration program uses four sliders to process a picture using a relatively
simple algorithm. By moving the top three sliders in Figure 9, you can scale the red,
green, and blue color values independently of one another. By moving the fourth slider,
you can scale all three colors together.

Moving the fifth slider simply causes the computer to beep, as does clicking any of the
three buttons. I left those four components in the GUI in this demonstration program for
illustration purposes only.

Writing backup files

Positioning a slider at some point along its range and clicking the Write button causes a
backup file to be written containing the current state of the display.

Terminating the program

Clicking the large X in the upper-right corner of the display does not terminate the
program. It simply hides the display, which is of no practical use. The program is
terminated by clicking the large X in the upper-right corner of the GUI.

Before terminating, the program writes an output file containing the final state of the
display in the same format as the input file. The name of the output file is the same as
the name of the input file except that the word FINAL is inserted immediately ahead of
the extension. The final output file and all of the backup files are written into the same
directory from which the image file was originally read. This program does not modify
the contents of the input file.

ChangeListener objects

Separate ChangeListener objects are registered on each of the five sliders. In the
demo program, each time one of the top four sliders fires a ChangeEvent, the event
handler creates a new display containing a copy of the original picture.

The method named handleSliderABandC

The handlers for the top three sliders call the method named
handleSliderABandC. This method adjusts all three colors in all of the pixels based on
the current values of the three sliders. The top slider is used to adjust red; the second
slider is used to adjust green; and the third slider is used to adjust blue.

The method named handleSliderD

The event handler on the fourth slider calls the method named handleSliderD. This
method adjusts all three colors in all of the pixels based on the current value of the
fourth slider.

The handler for the fifth slider simply causes the computer to beep to demonstrate that it
is alive.

Making it easy to write image-processing programs

The main purpose of this template program is to make it possible for you to write image
processing programs with a minimum of effort. For many different kinds of image
processing programs, you should be able to confine most of your programming efforts
to changing the constants at the beginning of the program, inserting code in the existing
event listeners, and writing methods that are called by those event listeners.

Will explain in fragments

A complete listing of the program is provided in Listing 13 near the end of the
lesson. Because of the similarity of this template program to the one that I explained in
the earlier lesson, I won't explain this program in detail. Instead, I will confine my
explanation to those aspects of the program that you will need to know about to use it
effectively.

Beginning of the program named FiveSliderTemplate01

The program begins in Listing 1. As I mentioned earlier, you can configure the GUI by
changing the values of constants at the beginning of the program. You can control
whether or not the sliders and buttons appear in the GUI, along with the contents of
various labels by changing the contents of the constants.

Listing 1. Beginning of the program named FiveSliderTemplate01.

public class FiveSliderTemplate01 extends

JFrame{

 //SLIDERS

 //Change the following boolean values to

false to

 // selectively exclude sliders

 private final boolean sliderAPanelInclude =

true;

 private final boolean sliderBPanelInclude =

true;

 private final boolean sliderCPanelInclude =

true;

 private final boolean sliderDPanelInclude =

true;

 private final boolean sliderEPanelInclude =

true;

For example, you can selectively exclude any of the five sliders from the GUI by
changing the values of the boolean constants in Listing 1 from true to false.

Set the minimum, maximum, and initial value for each slider

You can change the int values in Listing 2 to set the minimum, maximum, and initial
pointer position for each of the five sliders. If you excluded a slider by setting a
boolean constant in Listing 1 to false, you can simply ignore that slider from that point
forward and you don't need to do anything to the constants for that slider in Listing 2.

Listing 2. Set the minimum, maximum, and initial value for each slider.

 //Change the following int values to change

the limits

 // and initial positions of the sliders.

 private final int sliderAMin = 0;//minimum

 private final int sliderAMax = 100;//maximum

 private final int sliderAInit =

100;//initial value

 private final int sliderBMin = 0;

 private final int sliderBMax = 100;

 private final int sliderBInit = 100;

 private final int sliderCMin = 0;

 private final int sliderCMax = 100;

 private final int sliderCInit = 100;

 private final int sliderDMin = 0;

 private final int sliderDMax = 100;

 private final int sliderDInit = 100;

 private final int sliderEMin = 0;

 private final int sliderEMax = 100;

 private final int sliderEInit = 100;

Set the tick spacing on the sliders

The sliders move in steps of one unit. For example, if the slider extends from 0 at the
left end to 200 at the right end, 200 steps are required to move the button from one end
to the other. You can move the button one step at a time by clicking on the slider
track. If you drag the button, the value of the slider will change by the number of steps
traversed.

The tick marks on the sliders are for cosmetic and reference purposes only. They have
nothing to do with the slider value.

You can change the spacing of the tick marks on the sliders by changing the int values
in Listing 3. You may need to experiment with this for your program. Setting the major
tick marks too close together can cause the labels on those tick marks to overlap.

Listing 3. Set the tick spacing on the sliders.

 //Change the following int values to change

the tick

 // spacing on the sliders.

 private final int sliderAMajorTickSpacing =

10;

 private final int sliderAMinorTickSpacing =

5;

 private final int sliderBMajorTickSpacing =

10;

 private final int sliderBMinorTickSpacing =

5;

 private final int sliderCMajorTickSpacing =

10;

 private final int sliderCMinorTickSpacing =

5;

 private final int sliderDMajorTickSpacing =

10;

 private final int sliderDMinorTickSpacing =

5;

 private final int sliderEMajorTickSpacing =

10;

 private final int sliderEMinorTickSpacing =

5;

 Set the labels to the left of each slider

If you examine Figure 9, you will see that there is a label to the left of each slider. The
labels that I applied in Figure 9 were completely generic for illustration
purposes. However, you can change the labels to make them more descriptive by
changing the String values in Listing 4.

Listing 4. Set the labels to the left of each slider.

 //Change these string values to change the

labels

 // displayed to the left of the sliders.

 private final String sliderALabel =

"sliderA";

 private final String sliderBLabel =

"sliderB";

 private final String sliderCLabel =

"sliderC";

 private final String sliderDLabel =

"sliderD";

 private final String sliderELabel =

"sliderE";

Now you know how to configure the sliders

That pretty well wraps it up insofar as configuring the sliders is concerned. I have
assumed that you will always want the tick marks and the labels on those tick marks to
be painted. If that is not the case, you can prevent them from being painted by going
into the program and passing a false parameter to either or both of the following
methods when it is called on a particular slider:

 setPaintTicks(true)
 setPaintLabels(true)

Exclude all three buttons from the GUI

You can exclude all three of the buttons from the GUI by setting the boolean value in
Listing 5 to false. If you do that, you can simply ignore those buttons from that point
forward.

Listing 5. Exclude all three buttons from the GUI.

 //BUTTONS

 //Change the following value to false to

exclude all

 // three buttons as a group.

 private final boolean buttonPanelInclude =

true;

Exclude some, but not all of the buttons from the GUI

You can selectively exclude some or all of the buttons from the GUI by leaving the
boolean value in Listing 5 true and setting one or more of the boolean values in Listing
6 to false. If you exclude a button in this manner, you can simply ignore it from that
point forward.

Listing 6. Exclude some, but not all of the buttons from the GUI.

 //Change the following values to false to

selectively

 // exclude individual buttons

 private final boolean buttonAInclude = true;

 private final boolean buttonBInclude = true;

 private final boolean buttonCInclude = true;

Set the labels on the buttons

You can change the String values in Listing 7 to change the labels that appear on the
face of the buttons. As you can see in Figure 9, I placed very generic labels on the
buttons for illustration purposes. You can make those labels more meaningful by
changing the strings in Listing 7.

Listing 7. Set the labels on the buttons.

 //Change these string values to change the

text on the

 // buttons

 private final String buttonALabel =

"buttonA";

 private final String buttonBLabel =

"buttonB";

 private final String buttonCLabel =

"buttonC";

Of course, if you have already excluded a button from the GUI, you don't need to do
anything about its label. Just ignore the code in Listing 7.

Set the label for the text field

There is a label to the left of the text field that describes the purpose of the text field as
being the entry point for the file name. You can change that label if you wish by
changing the String value in Listing 8.

Listing 8. Set the label for the text field.

 //MISCELLANEOUS

 //Change this string to change the text to

the left of

 // the text field.

 private final JLabel fileNameLabel =

 new

JLabel("File Name: ");

Set the default input file name

Mainly to make it easier to test the program, I set a default value in the text field that is
used to enter the file name. You can change that if you like by changing the String
value in Listing 9.

Listing 9. Set the default input file name.

 //Change this string to change the path and

name of the

 // default input file.

 private final String defaultFileName =

"FiveSliderTemplate01.jpg";

Program the listeners on the sliders and the buttons

The template program registers an anonymous ChangeListener object on each of the
five sliders and an anonymous ActionListener object on each of the three buttons. As
an example, Listing 10 shows the code for one of those listeners.

Listing 10. Program the ChangeListener on the sliders.

 sliderA.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on

the display.

 graphics = display.getGraphics();

graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderABandC();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

Making your program different

It is likely that you will want the behavior of your program to be different from the
behavior of the template program when the user moves a slider. In that case, you can:

 Modify the code in the body of the method named stateChanged (shown blue in
Listing 10)

 Cause the stateChanged method to call a different method than the method
named handleSliderABandC (shown red in Listing 10), or

 Leave the code in Listing 10 intact and modify the code in the method named
handleSliderABandC to cause the behavior to suit your needs.

That should cover the things that you need to know to make effective use of the
template program for writing your own image-processing programs using sliders and
buttons.

The program named HsbEdit02

This is the program that was used to produce the images that you saw in Figure 1
through Figure 8. This program was written using the template program named
FiveSliderTemplate01 as a starting point. Various constant values were modified at
the beginning of the template program to configure the program for this intended
purpose. In addition, the event handlers for three of the sliders were modified to serve
the purposes of this program.

The purpose of this program is to show you how to perform HSB color editing on your
digital photos.

Behavior of the program

The program presents an initial GUI in the upper-left corner of the screen that allows the
user to specify an image file to be edited. When the user enters the name (and
optionally the path) of the file to be edited, the user is presented with a display of the
image being edited and a relocated version of the GUI. The GUI contains three sliders
and a Write button as shown in Figure 1.

The sliders are labeled Hue, Sat, and Bright (abbreviations for hue, saturation, and
brightness), which are the words behind the nomenclature for the HSB color model.

The user can change any combination of hue, saturation, and brightness of the image
by adjusting the sliders.

Writing backup files

At any point, the user can click the Write button on the GUI to cause the processed
image in its current state to be written into a backup file of type bmp. (Note that only the
most recent five backup files are saved.)

A final output file

When the user terminates the program by clicking the large X in the upper-right corner
of the GUI, the final processed image is written into a final output file. The name of the
output file is the same as the name of the input file except that the word FINAL is
inserted immediately ahead of the extension. The final output file and all of the backup
files are written into the same directory from which the image file was originally read.

Ericson's multimedia library is required

As I explained in the earlier discussion of the template program, access to Ericson's
multimedia library is required. Also, other considerations that I explained in conjunction
with the template program apply to this program as well.

Even though I mentioned it in conjunction with the discussion of the template program, I
want to emphasize that this program was designed to teach programming and image
processing concepts. It was not designed to compete on a speed or convenience basis
with commercially-available photograph processing programs such as Adobe's
Photoshop Elements.

Will explain in fragments

A complete listing of this program is provided in Listing 14 near the end of the lesson. I
will explain only that code that causes the template program to be specialized for this
purpose.

Configuring the GUI

As I mentioned earlier, I configured the GUI by setting the values of certain constants at
the beginning of the program. You can view those changes in Listing 14.

Programming the event handlers

The ChangeListener class definitions that are registered on the three sliders are shown
in Listing 11.

Listing 11. Program the event handlers.

 sliderA.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on

the display.

 graphics = display.getGraphics();

graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderABandC();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--

--------//

 sliderB.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on

the display.

 graphics = display.getGraphics();

graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderABandC();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--

--------//

 sliderC.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on

the display.

 graphics = display.getGraphics();

graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderABandC();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

The behavior of all three listeners is the same

A quick glance at Listing 11 will tell you that the behavior of all three listeners is the
same. Each event handler creates a new display by copying the original picture. Then
it calls a method named handleSliderABandC where the interesting behavior of the
program is controlled.

These anonymous class definitions are the same as in the template program. All that I
needed to do to modify the behavior of the program was to modify the behavior of the
method named handleSliderABandC.

An alternative approach

It is probably worth noting that if I were writing this program from scratch instead of
adopting a template program, I would probably define a single member class that
implements the ChangeListener interface and register it on all three sliders instead of
defining three separate anonymous listener classes.

The method named handleSliderABandC

This method makes it possible for the user to perform HSB color editing on a digital
photo. The method is called each time any one of the hue, saturation, or brightness
sliders shown in Figure 1 fires a ChangeEvent.

Events are fired when the user moves the buttons on the sliders.

Immediately before this method is called by the anonymous listeners in Listing 11, a
new display is created. The display contains a copy of the original picture. This method
operates only on the display. It does not modify the original picture.

Each time this method is called, it gets the value of each slider and uses those values to
modify the corresponding hue, saturation, and brightness property for every pixel in the
image currently residing in the display.

Processing steps

Basically, the method does the following for each pixel:

1. Get the red, green, and blue values from the native RGB color model data for the
pixel.

2. Convert the RGB values into HSB values.
3. Modify the HSB values independently of one another using the current slider

values.
4. Convert the modified HSB values back into RGB values.
5. Use the RGB values to set the modified color into the pixel.

The method is synchronized to eliminate potential problems resulting from the possibility
that the method may be called on two threads concurrently.

The method named handleSliderABandC is shown in its entirety in Listing 12.

Listing 12. The method named handleSliderABandC.

 private synchronized void

handleSliderABandC(){

 pixels = display.getPixels();

 float[] hsbvals = new float[3];//HSB pixel

values.

 //Process every pixel in the image using

the same

 // algorithm.

 for(int cnt = 0;cnt <

pixels.length;cnt++){

 //Get the red, green, and blue values

for the

 // current pixel.

 red = pixels[cnt].getRed();

 green = pixels[cnt].getGreen();

 blue = pixels[cnt].getBlue();

 //Get the three HSB color model values

that

 // correspond to the current pixel color

expressed

 // in the RGB color model. When the

method returns,

 // the three HSB values have been placed

in the

 // three-element array referred to by

hsbvals in the

 // order hue, saturation, and

brightness.

 Color.RGBtoHSB(red,green,blue,hsbvals);

 //Modify the hue value for the pixel

based on the

 // current value of the Hue slider. Note

that this

 // statement performs addition instead

of

 // multiplication.

 hsbvals[0] = (float)(hsbvals[0] +

sliderA.getValue()/360.0);//hue

 //Modify the saturation value for the

pixel based

 // on the current value of the Sat

slider. Note

 // that multiplication is used here.

 hsbvals[1] = (float)(hsbvals[1] *

sliderB.getValue()/100.0);//saturation

 //If the computed value is greter than

1.0, clip it

 // at 1.0.

 if(hsbvals[1] > 1.0) hsbvals[1] =

(float)1.0;

 //Modify the brightness value for the

pixel based

 // on the current value of the Bright

slider. Once

 // again, multiplication is used here.

 hsbvals[2] = (float)(hsbvals[2] *

sliderC.getValue()/100.0);//brightness

 if(hsbvals[2] > 1.0) hsbvals[2] =

(float)1.0;

 //Convert the HSB color values back into

RGB color

 // values.

 int color = Color.HSBtoRGB(

hsbvals[0],hsbvals[1],hsbvals[2]);

 //Use the RGB color values to set the

modified color

 // in the pixel.

 pixels[cnt].setColor(new Color(color));

 }//end for loop

 //Repaint the display.

 display.repaint();

 }//end handleSliderABandC

 //--

----------//

By the time that you have reached this point in the lesson, the earlier explanation of the
concepts of HSB pixel editing, the brief explanation of the processing steps, and the
embedded comments in the method should provide a sufficient explanation for the
behavior this method.

Run the programs

I encourage you to copy the code from Listing 13 and Listing 14, compile the code, and
execute it. Experiment with the code, making changes, and observing the results of
your changes. Make certain that you can explain why your changes behave as they do.

Summary

I provided the code for an upgraded template program for processing images. Then I
explained the HSB color model and showed you how to write a program to adjust the
hue, saturation, and brightness of your digital photos.

What's next?

In the next lesson, you will learn how to use affine transforms to scale, rotate, and
translate Picture objects.

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords
 Threads of Control
 Painting in AWT and Swing
 Wikipedia Turtle Graphics
 IsA or HasA

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809

 Vector Cad-Cam XI Lathe Tutorial
 Classification of 3D to 2D projections
 Color model from Wikipedia
 Light and color: an introduction by Norman Koren
 Color Principles - Hue, Saturation, and Value
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 400 Processing Image Pixels using Java, Getting Started

402 Processing Image Pixels using Java, Creating a Spotlight
404 Processing Image Pixels Using Java: Controlling Contrast and Brightness
406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion
408 Processing Image Pixels, Performing Convolution on Images
410 Processing Image Pixels, Understanding Image Convolution in Java
412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2
416 Processing Image Pixels, An Improved Image-Processing Framework in
Java
418 Processing Image Pixels, Creating Visible Watermarks in Java
450 A Framework for Experimenting with Java 2D Image-Processing Filters
452 Using the Java 2D LookupOp Filter Class to Process Images
454 Using the Java 2D AffineTransformOp Filter Class to Process Images
456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble
Images
458 Using the Java 2D BandCombineOp Filter Class to Process Images
460 Using the Java 2D ConvolveOp Filter Class to Process Images
462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to
Process Images

 506 JavaBeans, Introspection
 2100 Understanding Properties in Java and C#
 2300 Generics in J2SE, Getting Started
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java

http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://en.wikipedia.org/wiki/Color_model
../Light%20and%20color:%20%20an%20introduction
http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html#(HSV)
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856
http://www.developer.com/java/other/article.php/3696676
http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086

 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
 348 The Pen and PathSegment Classes: Multimedia Programming with Java
 349 A Pixel Editor Program in Java: Multimedia Programming with Java
 350 3D Displays, Color Distance, and Edge Detection
 351 A Slider-Controlled Softening Program for Digital Photos
 352 Adding Animated Movement to Your Java Application
 353 A Slider-Controlled Sharpening Program for Digital Photos
 354 The DigitalPicture Interface
 355 The HSB Color Model
 356 The show Method and the PictureFrame Class

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 13 and
Listing 14 below.

Listing 13. Source code for the program named FiveSliderTemplate01.

/*File FiveSliderTemplate01 Copyright 2009 R.G.Baldwin

This is a template program that takes some of the pain out

of writing image processing programs. The program

produces a display window for a processed Picture object

plus the following components with associated labels in a

GUI object that is separate and distinct from the display

window:

1. A text field for entry of an input image file and path

name.

2. A Write button for writing backup files during

processing.

3. Up to five general-purpose sliders with registered

change listeners.

4. Up to three general-purpose buttons with registered

action listeners.

5. A shutdown procedure that writes a final output image

file.

Any of the general-purpose sliders and buttons that aren't

needed can be eliminated from the GUI by setting the

values of certain constants at the beginning of the

program to false.

Ideally, by using this template, you will be able to

concentrate on image-processing logic and not have to deal

with the programming details involved in the overall

program.

The template program requires access to Ericson's

multimedia library.

http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761
http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671
http://www.developer.com/java/other/article.php/3806156
http://www.dickbaldwin.com/java/Java353.htm
http://www.dickbaldwin.com/java/Java354.htm
http://www.dickbaldwin.com/java/Java355.htm
http://www.dickbaldwin.com/java/Java356.htm

The speed and smoothness of programs that you write using

this template program will depend on a combination of your

programming skills and the speed of your computer. Note,

however that this template program was designed to teach

programming and image processing concepts. It was not

designed to compete on a speed or convenience basis with

commercially-available photograph processing programs such

as Adobe's Photoshop Elements.

Backup files containing the current state of the display

are written into the directory from which the original

image file was read. The five most recent backup files are

saved. The backup files are written in bmp format

regardless of the format of the original image file in

order to avoid JPEG compression and preserve picture

quality. The names of the backup files are the same as

the name of the original image file except that BAKn is

inserted immediately ahead of the extension where n is a

digit ranging from 0 to 4. The value of n rolls over and

starts back at 0 when it exceeds 4.

Input files of type jpg, bmp, png are supported.

If the input file is in the same directory as the program

code, only the name and extension must be entered into the

text field. Otherwise, a complete path and file name with

extension must be entered.

The GUI initially appears in the upper-left corner of the

screen. At this point, the sliders and the buttons are all

disabled. When the user enters the name of the input file,

a display of the image contained in that file appears in

the upper-left corner of the screen and the GUI is

relocated to a position immediately below the display.

When the GUI is relocated to the position immediately

below the display, the sliders and the buttons are all

enabled. and the text field is disabled. The width of the

GUI is changed to match the width of the display unless

the width of the display is less than the preferred width

of the GUI. In that case, the GUI appears at its preferred

width.

This program demonstrates the use of four sliders in a

meaningful way. The fifth slider and the three buttons are

demonstrated in a trivial way. (They simply cause the

computer to beep when they fire an event.)

For this demonstration program, each slider ranges

from 0 to 100 with the initial position of the slider at

100.

As mentioned earlier, many aspects of the configuration of

the GUI can be established by changing the values of

constants at the beginning of the program. For example, by

setting some of the boolean constants to false, you can

eliminate any, all, or any combination of the sliders and

buttons from the GUI. (You cannot eliminate the Write

button using this approach.) Various text and label values

can be configured in a similar manner.

Note, however, that configuring the GUI by setting the

above-mentioned boolean constants to false doesn't prevent

the objects from being instantiated. It simply prevents

them from becoming part of the GUI. In a production

program, you would probably want to eliminate the

instantiation as well to conserve resources.

This demonstration program uses four sliders to process a

picture using a relatively simple algorithm. By moving the

top three sliders, you can scale the red, green, and blue

color values independently of one another. By moving the

fourth slider, you can scale all three colors together.

Moving the fifth slider simply causes the computer to

beep, as does clicking any of the three buttons. I left

those four components in the GUI in this demonstration

program for illustration purposes only.

Positioning a slider at some point along its range and

clicking the Write button causes a backup file to be

written containing the current state of the display.

Clicking the large X in the upper-right corner of the

display does not terminate the program. It simply hides

the display, which is of no practical use.

The program is terminated by clicking the large X in the

upper-right corner of the GUI. Before terminating, the

program writes an output file containing the final state

of the display in the same format as the input file. The

name of the output file is the same as the name of the

input file except that the word FINAL is inserted

immediately ahead of the extension. The final output file

(and all of the backup files) are written into the same

directory from which the image file was originally read.

This program does not modify the contents of the input

file.

Separate ChangeListener objects are registered on each of

the five sliders. Each time one of the top four sliders

fires a ChangeEvent, the event handler creates a new

display containing a copy of the original picture. The

handlers for the top three sliders call the method named

handleSliderABandC. This method adjusts all three colors

in all of the pixels based on the current values of the

three sliders. The top slider is used to adjust red; the

second slider is used to adjust green; and the third

slider is used to adjust blue. The event handler on the

fourth slider calls the method named handleSliderD. This

method adjusts all three colors in all of the pixels based

on the current value of the fourth slider. The handler for

the fifth slider simply causes the computer to beep to

demonstrate that it is alive.

The main purpose of this template program is to make it

possible for you to write image processing programs with a

minimum of effort. For many different kinds of image

processing programs, you should be able to confine most of

your programming efforts to changing the constants at the

beginning of the program, inserting code in the existing

event listeners, and writing methods that are called by

those event listeners.

Tested using Windows Vista Home Premium Edition,

Java 1.6x, and the version of Ericson's multimedia library

contained in bookClasses10-1-07.zip.

***/

import java.awt.Graphics;

import java.awt.Image;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JSlider;

import javax.swing.JLabel;

import javax.swing.JButton;

import javax.swing.JTextField;

import javax.swing.event.ChangeListener;

import javax.swing.event.ChangeEvent;

import javax.swing.WindowConstants;

import java.io.File;

public class FiveSliderTemplate01 extends JFrame{

 //The following constants are used to configure the GUI.

 // You can control whether or not the sliders and

 // buttons appear in the GUI, along with the contents of

 // various labels by changing the contents of the

 // following constants.

 //SLIDERS

 //Change the following boolean values to false to

 // selectively exclude sliders

 private final boolean sliderAPanelInclude = true;

 private final boolean sliderBPanelInclude = true;

 private final boolean sliderCPanelInclude = true;

 private final boolean sliderDPanelInclude = true;

 private final boolean sliderEPanelInclude = true;

 //Change the following int values to change the limits

 // and initial positions of the sliders.

 private final int sliderAMin = 0;//minimum

 private final int sliderAMax = 100;//maximum

 private final int sliderAInit = 100;//initial value

 private final int sliderBMin = 0;

 private final int sliderBMax = 100;

 private final int sliderBInit = 100;

 private final int sliderCMin = 0;

 private final int sliderCMax = 100;

 private final int sliderCInit = 100;

 private final int sliderDMin = 0;

 private final int sliderDMax = 100;

 private final int sliderDInit = 100;

 private final int sliderEMin = 0;

 private final int sliderEMax = 100;

 private final int sliderEInit = 100;

 //Change the following int values to change the tick

 // spacing on the sliders.

 private final int sliderAMajorTickSpacing = 10;

 private final int sliderAMinorTickSpacing = 5;

 private final int sliderBMajorTickSpacing = 10;

 private final int sliderBMinorTickSpacing = 5;

 private final int sliderCMajorTickSpacing = 10;

 private final int sliderCMinorTickSpacing = 5;

 private final int sliderDMajorTickSpacing = 10;

 private final int sliderDMinorTickSpacing = 5;

 private final int sliderEMajorTickSpacing = 10;

 private final int sliderEMinorTickSpacing = 5;

 //Change these string values to change the labels

 // displayed to the left of the sliders.

 private final String sliderALabel = "sliderA";

 private final String sliderBLabel = "sliderB";

 private final String sliderCLabel = "sliderC";

 private final String sliderDLabel = "sliderD";

 private final String sliderELabel = "sliderE";

 //BUTTONS

 //Change the following value to false to exclude all

 // three buttons as a group.

 private final boolean buttonPanelInclude = true;

 //Change the following values to false to selectively

 // exclude individual buttons

 private final boolean buttonAInclude = true;

 private final boolean buttonBInclude = true;

 private final boolean buttonCInclude = true;

 //Change these string values to change the text on the

 // buttons

 private final String buttonALabel = "buttonA";

 private final String buttonBLabel = "buttonB";

 private final String buttonCLabel = "buttonC";

 //MISCELLANEOUS

 //Change this string to change the text to the left of

 // the text field.

 private final JLabel fileNameLabel =

 new JLabel("File Name: ");

 //Change this string to change the path and name of the

 // default input file.

 private final String defaultFileName =

 "FiveSliderTemplate01.jpg";

 //--//

 private final JPanel mainPanel = new JPanel();

 private final JPanel northPanel = new JPanel();

 private final JPanel centerPanel = new JPanel();

 private final JPanel southPanel = new JPanel();

 private final JPanel sliderAPanel = new JPanel();

 private final JPanel sliderBPanel = new JPanel();

 private final JPanel sliderCPanel = new JPanel();

 private final JPanel sliderDPanel = new JPanel();

 private final JPanel sliderEPanel = new JPanel();

 private final JPanel buttonPanel = new JPanel();

 private final JButton writeButton =

 new JButton("Write");

 private final JButton buttonA =

 new JButton(buttonALabel);

 private final JButton buttonB =

 new JButton(buttonBLabel);

 private final JButton buttonC =

 new JButton(buttonCLabel);

 //This text field is preloaded with the name of a test

 // file to make testing and debugging easier.

 private JTextField fileNameField =

 new JTextField(defaultFileName);

 //Change the int values at the beginning of the program

 // to reconfigure these sliders.

 private final JSlider sliderA =

 new JSlider(sliderAMin,sliderAMax,sliderAInit);

 private final JSlider sliderB =

 new JSlider(sliderBMin,sliderBMax,sliderBInit);

 private final JSlider sliderC =

 new JSlider(sliderCMin,sliderCMax,sliderCInit);

 private final JSlider sliderD =

 new JSlider(sliderDMin,sliderDMax,sliderDInit);

 private final JSlider sliderE =

 new JSlider(sliderEMin,sliderEMax,sliderEInit);

 //A reference to the original Picture object will be

 // stored here.

 private Picture picture = null;

 //A reference to a modified copy of the original

 // Picture object will be stored here.

 private Picture display = null;

 //Miscellaneous working variables.

 private Image image = null;

 private Graphics graphics = null;

 private Pixel pixel = null;

 private int red = 0;

 private int green = 0;

 private int blue = 0;

 private int writeCounter = 0;

 private Pixel[] pixels = null;

 private String fileName = null;

 private String outputPath = null;

 private String extension = null;

 //--//

 public static void main(String[] args){

 new FiveSliderTemplate01();

 }//end main method

 //--//

 public FiveSliderTemplate01(){//constructor

 //All close operations are handled in a WindowListener

 // object.

 setDefaultCloseOperation(

 WindowConstants.DO_NOTHING_ON_CLOSE);

 //Put decorations on the sliders. Change the constants

 // at the beginning of the program to control major

 // and minor tick spacing.

 sliderA.setMajorTickSpacing(sliderAMajorTickSpacing);

 sliderA.setMinorTickSpacing(sliderAMinorTickSpacing);

 sliderA.setPaintTicks(true);

 sliderA.setPaintLabels(true);

 sliderB.setMajorTickSpacing(sliderBMajorTickSpacing);

 sliderB.setMinorTickSpacing(sliderBMinorTickSpacing);

 sliderB.setPaintTicks(true);

 sliderB.setPaintLabels(true);

 sliderC.setMajorTickSpacing(sliderCMajorTickSpacing);

 sliderC.setMinorTickSpacing(sliderCMinorTickSpacing);

 sliderC.setPaintTicks(true);

 sliderC.setPaintLabels(true);

 sliderD.setMajorTickSpacing(sliderDMajorTickSpacing);

 sliderD.setMinorTickSpacing(sliderDMinorTickSpacing);

 sliderD.setPaintTicks(true);

 sliderD.setPaintLabels(true);

 sliderE.setMajorTickSpacing(sliderEMajorTickSpacing);

 sliderE.setMinorTickSpacing(sliderEMinorTickSpacing);

 sliderE.setPaintTicks(true);

 sliderE.setPaintLabels(true);

 //Construct the GUI working generally from the top

 // down.

 mainPanel.setLayout(new BorderLayout());

 mainPanel.add(northPanel,BorderLayout.NORTH);

 mainPanel.add(centerPanel,BorderLayout.CENTER);

 mainPanel.add(southPanel,BorderLayout.SOUTH);

 northPanel.setLayout(new BorderLayout());

 //Add sliders if the constants at the beginning of the

 // program are true.

 if(sliderAPanelInclude)

 northPanel.add(sliderAPanel,BorderLayout.NORTH);

 if(sliderBPanelInclude)

 northPanel.add(sliderBPanel,BorderLayout.CENTER);

 if(sliderCPanelInclude)

 northPanel.add(sliderCPanel,BorderLayout.SOUTH);

 centerPanel.setLayout(new BorderLayout());

 //Add more sliders if the constants at the beginning

 // of the program are true.

 if(sliderDPanelInclude)

 centerPanel.add(sliderDPanel,BorderLayout.NORTH);

 if(sliderEPanelInclude)

 centerPanel.add(sliderEPanel,BorderLayout.CENTER);

 //Add a panel containing from one to three buttons if

 // the constant at the beginning of the program is

 // true.

 if(buttonPanelInclude)

 centerPanel.add(buttonPanel,BorderLayout.SOUTH);

 //Add buttons if the constants at the beginning of the

 // program are true.

 if(buttonAInclude) buttonPanel.add(buttonA);

 if(buttonBInclude) buttonPanel.add(buttonB);

 if(buttonCInclude) buttonPanel.add(buttonC);

 //These components should always be added.

 southPanel.add(writeButton);

 southPanel.add(fileNameLabel);

 southPanel.add(fileNameField);

 sliderAPanel.add(new JLabel(sliderALabel));

 sliderAPanel.add(sliderA);

 sliderBPanel.add(new JLabel(sliderBLabel));

 sliderBPanel.add(sliderB);

 sliderCPanel.add(new JLabel(sliderCLabel));

 sliderCPanel.add(sliderC);

 sliderDPanel.add(new JLabel(sliderDLabel));

 sliderDPanel.add(sliderD);

 sliderEPanel.add(new JLabel(sliderELabel));

 sliderEPanel.add(sliderE);

 //Disable the sliders and the buttons until the

 // user enters the file name.

 sliderA.setEnabled(false);

 sliderB.setEnabled(false);

 sliderC.setEnabled(false);

 sliderD.setEnabled(false);

 sliderE.setEnabled(false);

 buttonA.setEnabled(false);

 buttonB.setEnabled(false);

 buttonC.setEnabled(false);

 writeButton.setEnabled(false);

 //Set the size of the GUI and display it in the upper-

 // left corner of the screen. It will be moved later

 // to a position immediately below the display of the

 // picture.

 getContentPane().add(mainPanel);

 pack();//Set to overall preferred size.

 setVisible(true);

 //Move the focus to the text field to make it easy

 // for the user to enter the name of the input file.

 fileNameField.requestFocus();

 //--//

 //Register a listener on the text field. When the user

 // enters the file name in the text field, set

 // everything up properly so that the program will

 // function as an event-driven picture-manipulation

 // program until the user clicks the large X in the

 // upper-right of the GUI.

 fileNameField.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 //Disable the text field to prevent the user

 // from entering anything else in it.

 fileNameField.setEnabled(false);

 fileNameLabel.setEnabled(false);

 //Get the file name from the text field and use

 // it to create a new Picture object. Display my

 // name in the image.

 fileName = fileNameField.getText();

 picture = new Picture(fileName);

 picture.addMessage("Dick Baldwin",10,20);

 //Get information that will be used to write the

 // output files.

 String inputPath = new File(fileName).

 getAbsolutePath();

 int posDot = inputPath.lastIndexOf('.');

 outputPath = inputPath.substring(0,posDot);

 //Write the first copy of the output backup

 // file before any processing is done.

 picture.write(outputPath

 + "BAK" + writeCounter++ + ".bmp");

 //Get filename extension. It will be used later

 // to write the final output file.

 extension = inputPath.substring(posDot);

 //Decorate the GUI.

 setTitle("Copyright 2009, R.G.Baldwin");

 //Create the picture that will be processed.

 // Note that the original image file is not

 // modified by this program.

 int pictureWidth = picture.getWidth();

 int pictureHeight = picture.getHeight();

 display = new Picture(

 pictureWidth,pictureHeight);

 //Draw the initial display.

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 display.show();

 //Adjust the width of the GUI to match the width

 // of the display if possible. Then relocate the

 // GUI to a position immediately below the

 // display.

 //Establish the preferred size now that the

 // input file name has been entered.

 pack();

 int packedHeight = getHeight();

 int packedWidth = getWidth();

 if((pictureWidth + 7) >= packedWidth){

 //Make the width of the GUI the same as the

 // width of the display.

 setSize(pictureWidth + 7,packedHeight);

 }//Else, just leave the GUI at its current size.

 //Put the GUI in its new location immediately

 // below the display.

 setLocation(0,pictureHeight + 30);

 //Enable the sliders and the buttons.

 sliderA.setEnabled(true);

 sliderB.setEnabled(true);

 sliderC.setEnabled(true);

 sliderD.setEnabled(true);

 sliderE.setEnabled(true);

 buttonA.setEnabled(true);

 buttonB.setEnabled(true);

 buttonC.setEnabled(true);

 writeButton.setEnabled(true);

 }//end actionPerformed

 }//end new ActionListener

);//end addActionListener

 //--//

 //Register an ActionListener on the writeButton.

 // Each time the user clicks the button, a backup bmp

 // file containing the current state of the display is

 // written into the directory from which the original

 // picture was read. The five most recent backup files

 // are saved. The names of the backup files are the

 // same as the name of the input file except that BAKn

 // is inserted immediately ahead of the extension

 // where n is a digit ranging from 0 to 4. The value

 // of n rolls over at 4 and starts back at 0.

 writeButton.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 display.write(outputPath

 + "BAK" + writeCounter++ + ".bmp");

 //Reset the writeCounter if it exceeds 4 to

 // conserve disk space.

 if(writeCounter > 4){

 writeCounter = 0;

 }//end if

 }//end action performed

 }//end newActionListener

);//end addActionListener

 //--//

 //Register an ActionListener on buttonA. This button

 // and this listener are here for future expansion.

 // For demonstration purposes, make the computer beep

 // when the user clicks any of the three buttons.

 buttonA.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 getToolkit().getDefaultToolkit().beep();

 }//end action performed

 }//end newActionListener

);//end addActionListener

 //--//

 //Register an ActionListener on buttonB. This button

 // and this listener are here for future expansion.

 buttonB.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 getToolkit().getDefaultToolkit().beep();

 }//end action performed

 }//end newActionListener

);//end addActionListener

 //--//

 //Register an ActionListener on buttonC. This button

 // and this listener are here for future expansion.

 buttonC.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 getToolkit().getDefaultToolkit().beep();

 }//end action performed

 }//end newActionListener

);//end addActionListener

 //--//

 //Register a WindowListener that will respond when the

 // user clicks the large X in the upper-right corner

 // of the GUI. This event handler will write the final

 // state of the display into an output file of the

 // same type as the original input file. The name will

 // be the same except that the word FINAL will be

 // inserted immediately ahead of the extension.

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 display.write(outputPath + "FINAL" + extension);

 System.exit(0);

 }//end windowClosing

 }//end new WindowAdapter

);//end addWindowListener

 //--//

 //Register a ChangeListener object on sliderA.

 //Each time sliderA fires a ChangeEvent, this event

 // handler creates a new display as a copy of the

 // original picture and calls a method named

 // handleSliderABandC. You can modify the code in this

 // listener, the listeners for the other sliders, and

 // the listeners for the buttons to customize the

 // behavior of the program to meet your needs.

 sliderA.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on the display.

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderABandC();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--//

 //Register a ChangeListener object on sliderB.

 //Each time sliderB fires a ChangeEvent, this event

 // handler creates a new display as a copy of the

 // original picture and calls a method named

 // handleSliderABandC.

 sliderB.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on the display.

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderABandC();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--//

 //Register a ChangeListener object on sliderC.

 //Each time sliderC fires a ChangeEvent, this event

 // handler creates a new display as a copy of the

 // original picture and calls a method named

 // handleSliderABandC.

 sliderC.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on the display.

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderABandC();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--//

 //Register a ChangeListener object on sliderD.

 //Each time sliderD fires a ChangeEvent, this event

 // handler creates a new display as a copy of the

 // original picture and calls a method named

 // handleSliderD. Note that this is a different

 // method than the method called by the three

 // previous listener objects.

 sliderD.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on the display.

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderD();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--//

 //Register a ChangeListener object on sliderE.

 //Each time sliderE fires a ChangeEvent, this event

 // handler causes the computer to beep solely to

 // demonstrate that the slider is alive. Note that the

 // beep occurs at the end of the slider travel.

 sliderE.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 getToolkit().getDefaultToolkit().beep();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--//

 }//end constructor

 //--//

 /*

 This version of the method named handleSliderABandC is

 designed for illustration purposes only. The method

 is called each time sliderA, sliderB, or sliderC fires

 a ChangeEvent.

 Immediately before this method is called, a new

 display is created as a copy of the original picture.

 This method operates only on the display. Each time

 the method is called, it gets the value of each slider

 and uses that value as a multiplicative factor to

 adjust the corresponding color value in everypixel in

 the current display.

 The value of sliderA is used to adjust the red color.

 The value of sliderB is used to adjust the green

 color, and the value of sliderC is used to adjust the

 blue color.

 Depending on the position of the sliders when the event

 is fired, each color value for every pixel in the

 current display will be set to a value ranging from

 zero to 100 percent of its original value.

 Methods that are written to replace this one in your

 programs should never access the original Picture

 object directly, but should confine their operations

 to the Picture object referred to by the variable

 named display.

 The method is synchronized to eliminate the possiblilty

 that it may be called on two threads concurrently.

 */

 private synchronized void handleSliderABandC(){

 //Adjust the values of the colors based on the current

 // values of sliderA, sliderB, and sliderC.

 pixels = display.getPixels();

 for(int cnt = 0;cnt < pixels.length;cnt++){

 red = (int)(pixels[cnt].getRed()

 * sliderA.getValue()/100.0);

 green = (int)(pixels[cnt].getGreen()

 * sliderB.getValue()/100.0);

 blue = (int)(pixels[cnt].getBlue()

 * sliderC.getValue()/100.0);

 pixels[cnt].setColor(new Color(red,green,blue));

 }//end for loop

 display.repaint();

 }//end handleSliderABandC

 //--//

 //This method adjusts all three color values for every

 // pixel on the basis of the value of sliderD only.

 //The method is synchronized to eliminate the remote

 // possiblilty that it may be called on two threads

 // concurrently.

 private synchronized void handleSliderD(){

 //Adjust the value of all three colors on the

 // basis of the current value of the sliderD.

 pixels = display.getPixels();

 double scaleFactor = sliderD.getValue()/100.0;

 for(int cnt = 0;cnt < pixels.length;cnt++){

 red = (int)(pixels[cnt].getRed() * scaleFactor);

 green = (int)(pixels[cnt].getGreen()* scaleFactor);

 blue = (int)(pixels[cnt].getBlue() * scaleFactor);

 pixels[cnt].setColor(new Color(red,green,blue));

 }//end for loop

 display.repaint();

 }//end handleSliderD

 //--//

}//end class FiveSliderTemplate01

Listing 14. Source code for the program named HsbEdit02.

/*File HsbEdit02 Copyright 2009 R.G.Baldwin

This program was written using the template program named

FiveSliderTemplate01 as a starting point. See the comments

in that program for detailed information about the

template.

The purpose of the program is to show you how to perform

HSB color editing on your digital photos.

The program allows the user to specify an image file to be

edited. The user is then presented with a display of the

image being edited and a GUI containing three sliders, a

Write button, and a text field for entry of the file name.

The sliders are labeled Hue, Sat, and Bright. The labels

are abbreviations for Hue, Saturation, and Brightness,

which are the words behind the nomenclature for the HSB

color model.

The user can change any combination of hue, saturation,

and brightness of the image by adjusting the sliders.

At any point, the user can click a Write button on the GUI

and write the processed image in its current state into a

backup file. (Note that only the most recent five backup

files are saved.) When the user terminates the program,

the final processed image is written into a final output

file.

The template program requires access to Ericson's

multimedia library.

Input files of type jpg, bmp, png are supported. The input

image file is not modified.

If the input file is in the same directory as the program

files, only the name and extension must be entered into

the text field. Otherwise, a complete path and file name

with extension must be entered.

Note, that this program was designed to teach

programming and image processing concepts. It was not

designed to compete on a speed or convenience basis with

commercially-available photograph processing programs such

as Adobe's Photoshop Elements.

The GUI initially appears in the upper-left corner of the

screen. At this point, the sliders and the buttons are all

disabled. When the user enters the name of the input file,

a display of the image contained in that file appears in

the upper-left corner of the screen and the GUI is

relocated to a position immediately below the display.

When the GUI is relocated to the position immediately

below the display, the sliders and the buttons are all

enabled. and the text field is disabled. The width of the

GUI is changed to match the width of the display if

possible.

Clicking the large X in the upper-right corner of the

display does not terminate the program. It simply hides

the display, which is of no practical use.

The program is terminated by clicking the large X in the

upper-right corner of the GUI. Before terminating, the

program writes an output file containing the final state

of the display in the same format as the input file. The

name of the output file is the same as the name of the

input file except that the word FINAL is inserted

immediately ahead of the extension. The final output file

(and all of the backup files) are written into the same

directory from which the image file was originally read.

Tested using Windows Vista Home Premium Edition,

Java 1.6x, and the version of Ericson's multimedia library

contained in bookClasses10-1-07.zip.

***/

import java.awt.Graphics;

import java.awt.Image;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JSlider;

import javax.swing.JLabel;

import javax.swing.JButton;

import javax.swing.JTextField;

import javax.swing.event.ChangeListener;

import javax.swing.event.ChangeEvent;

import javax.swing.WindowConstants;

import java.io.File;

public class HsbEdit02 extends JFrame{

 //The following constants are used to configure the GUI.

 // You can control whether or not the sliders and

 // buttons appear in the GUI, along with the contents of

 // various labels by changing the contents of the

 // following constants.

 //SLIDERS

 //Change the following boolean values to false to

 // selectively exclude sliders

 private final boolean sliderAPanelInclude = true;

 private final boolean sliderBPanelInclude = true;

 private final boolean sliderCPanelInclude = true;

 private final boolean sliderDPanelInclude = false;

 private final boolean sliderEPanelInclude = false;

 //Change the following int values to change the limits

 // and initial positions of the sliders.

 private final int sliderAMin = 0;//minimum

 private final int sliderAMax = 360;//maximum

 private final int sliderAInit = 0;//initial value

 private final int sliderBMin = 0;

 private final int sliderBMax = 400;

 private final int sliderBInit = 100;

 private final int sliderCMin = 0;

 private final int sliderCMax = 200;

 private final int sliderCInit = 100;

 //The following two sliders are not used.

 private final int sliderDMin = 0;

 private final int sliderDMax = 100;

 private final int sliderDInit = 100;

 private final int sliderEMin = 0;

 private final int sliderEMax = 100;

 private final int sliderEInit = 100;

 //Change the following int values to change the tick

 // spacing on the sliders.

 private final int sliderAMajorTickSpacing = 60;

 private final int sliderAMinorTickSpacing = 10;

 private final int sliderBMajorTickSpacing = 50;

 private final int sliderBMinorTickSpacing = 10;

 private final int sliderCMajorTickSpacing = 50;

 private final int sliderCMinorTickSpacing = 10;

 //The following sliders were not used.

 private final int sliderDMajorTickSpacing = 10;

 private final int sliderDMinorTickSpacing = 5;

 private final int sliderEMajorTickSpacing = 10;

 private final int sliderEMinorTickSpacing = 5;

 //Change these string values to change the labels

 // displayed to the left of the sliders.

 private final String sliderALabel = "Hue";

 private final String sliderBLabel = "Sat";

 private final String sliderCLabel = "Bright";

 //The following two sliders were not used

 private final String sliderDLabel = "sliderD";

 private final String sliderELabel = "sliderE";

 //BUTTONS

 //Change the following value to false to exclude all

 // three buttons as a group.

 //None of the three buttons were used.

 private final boolean buttonPanelInclude = false;

 //Change the following values to false to selectively

 // exclude individual buttons

 private final boolean buttonAInclude = true;

 private final boolean buttonBInclude = true;

 private final boolean buttonCInclude = true;

 //Change these string values to change the text on the

 // buttons

 private final String buttonALabel = "buttonA";

 private final String buttonBLabel = "buttonB";

 private final String buttonCLabel = "buttonC";

 //MISCELLANEOUS

 //Change this string to change the text to the left of

 // the text field.

 private final JLabel fileNameLabel =

 new JLabel("File Name: ");

 //Change this string to change the path and name of the

 // default input file.

 private final String defaultFileName = "HsbEdit02.jpg";

 //--//

 //Components for construction of the GUI.

 private final JPanel mainPanel = new JPanel();

 private final JPanel northPanel = new JPanel();

 private final JPanel centerPanel = new JPanel();

 private final JPanel southPanel = new JPanel();

 private final JPanel sliderAPanel = new JPanel();

 private final JPanel sliderBPanel = new JPanel();

 private final JPanel sliderCPanel = new JPanel();

 private final JPanel sliderDPanel = new JPanel();

 private final JPanel sliderEPanel = new JPanel();

 private final JPanel buttonPanel = new JPanel();

 private final JButton writeButton =

 new JButton("Write");

 private final JButton buttonA =

 new JButton(buttonALabel);

 private final JButton buttonB =

 new JButton(buttonBLabel);

 private final JButton buttonC =

 new JButton(buttonCLabel);

 //This text field is preloaded with the name of a test

 // file to make testing and debugging easier.

 private JTextField fileNameField =

 new JTextField(defaultFileName);

 //Change the int values at the beginning of the program

 // to reconfigure these sliders.

 private final JSlider sliderA =

 new JSlider(sliderAMin,sliderAMax,sliderAInit);

 private final JSlider sliderB =

 new JSlider(sliderBMin,sliderBMax,sliderBInit);

 private final JSlider sliderC =

 new JSlider(sliderCMin,sliderCMax,sliderCInit);

 private final JSlider sliderD =

 new JSlider(sliderDMin,sliderDMax,sliderDInit);

 private final JSlider sliderE =

 new JSlider(sliderEMin,sliderEMax,sliderEInit);

 //A reference to the original Picture object will be

 // stored here.

 private Picture picture = null;

 //A reference to a modified copy of the original

 // Picture object will be stored here.

 private Picture display = null;

 //Miscellaneous working variables.

 private Image image = null;

 private Graphics graphics = null;

 private Pixel pixel = null;

 private int red = 0;

 private int green = 0;

 private int blue = 0;

 private int writeCounter = 0;

 private Pixel[] pixels = null;

 private String fileName = null;

 private String outputPath = null;

 private String extension = null;

 //--//

 public static void main(String[] args){

 new HsbEdit02();

 }//end main method

 //--//

 public HsbEdit02(){//constructor

 //All close operations are handled in a WindowListener

 // object.

 setDefaultCloseOperation(

 WindowConstants.DO_NOTHING_ON_CLOSE);

 //Put decorations on the sliders. Change the constants

 // at the beginning of the program to control major

 // and minor tick spacing.

 sliderA.setMajorTickSpacing(sliderAMajorTickSpacing);

 sliderA.setMinorTickSpacing(sliderAMinorTickSpacing);

 sliderA.setPaintTicks(true);

 sliderA.setPaintLabels(true);

 sliderB.setMajorTickSpacing(sliderBMajorTickSpacing);

 sliderB.setMinorTickSpacing(sliderBMinorTickSpacing);

 sliderB.setPaintTicks(true);

 sliderB.setPaintLabels(true);

 sliderC.setMajorTickSpacing(sliderCMajorTickSpacing);

 sliderC.setMinorTickSpacing(sliderCMinorTickSpacing);

 sliderC.setPaintTicks(true);

 sliderC.setPaintLabels(true);

 sliderD.setMajorTickSpacing(sliderDMajorTickSpacing);

 sliderD.setMinorTickSpacing(sliderDMinorTickSpacing);

 sliderD.setPaintTicks(true);

 sliderD.setPaintLabels(true);

 sliderE.setMajorTickSpacing(sliderEMajorTickSpacing);

 sliderE.setMinorTickSpacing(sliderEMinorTickSpacing);

 sliderE.setPaintTicks(true);

 sliderE.setPaintLabels(true);

 //Construct the GUI working generally from the top

 // down.

 mainPanel.setLayout(new BorderLayout());

 mainPanel.add(northPanel,BorderLayout.NORTH);

 mainPanel.add(centerPanel,BorderLayout.CENTER);

 mainPanel.add(southPanel,BorderLayout.SOUTH);

 northPanel.setLayout(new BorderLayout());

 //Add sliders if the constants at the beginning of the

 // program are true.

 if(sliderAPanelInclude)

 northPanel.add(sliderAPanel,BorderLayout.NORTH);

 if(sliderBPanelInclude)

 northPanel.add(sliderBPanel,BorderLayout.CENTER);

 if(sliderCPanelInclude)

 northPanel.add(sliderCPanel,BorderLayout.SOUTH);

 centerPanel.setLayout(new BorderLayout());

 //Add more sliders if the constants at the beginning

 // of the program are true.

 if(sliderDPanelInclude)

 centerPanel.add(sliderDPanel,BorderLayout.NORTH);

 if(sliderEPanelInclude)

 centerPanel.add(sliderEPanel,BorderLayout.CENTER);

 //Add a panel containing from one to three buttons if

 // the constant at the beginning of the program is

 // true.

 if(buttonPanelInclude)

 centerPanel.add(buttonPanel,BorderLayout.SOUTH);

 //Add buttons if the constants at the beginning of the

 // program are true.

 if(buttonAInclude) buttonPanel.add(buttonA);

 if(buttonBInclude) buttonPanel.add(buttonB);

 if(buttonCInclude) buttonPanel.add(buttonC);

 //These components should always be added.

 southPanel.add(writeButton);

 southPanel.add(fileNameLabel);

 southPanel.add(fileNameField);

 sliderAPanel.add(new JLabel(sliderALabel));

 sliderAPanel.add(sliderA);

 sliderBPanel.add(new JLabel(sliderBLabel));

 sliderBPanel.add(sliderB);

 sliderCPanel.add(new JLabel(sliderCLabel));

 sliderCPanel.add(sliderC);

 sliderDPanel.add(new JLabel(sliderDLabel));

 sliderDPanel.add(sliderD);

 sliderEPanel.add(new JLabel(sliderELabel));

 sliderEPanel.add(sliderE);

 //Disable the sliders and the buttons until the

 // user enters the file name.

 sliderA.setEnabled(false);

 sliderB.setEnabled(false);

 sliderC.setEnabled(false);

 sliderD.setEnabled(false);

 sliderE.setEnabled(false);

 buttonA.setEnabled(false);

 buttonB.setEnabled(false);

 buttonC.setEnabled(false);

 writeButton.setEnabled(false);

 //Set the size of the GUI and display it in the upper-

 // left corner of the screen. It will be moved later

 // to a position immediately below the display of the

 // picture.

 getContentPane().add(mainPanel);

 pack();//Set to overall preferred size.

 setVisible(true);

 //Move the focus to the text field to make it easy

 // for the user to enter the name of the input file.

 fileNameField.requestFocus();

 //--//

 //Register a listener on the text field. When the user

 // enters the file name in the text field, set

 // everything up properly so that the program will

 // function as an event-driven picture-manipulation

 // program until the user clicks the large X in the

 // upper-right of the GUI.

 fileNameField.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 //Disable the text field to prevent the user

 // from entering anything else in it.

 fileNameField.setEnabled(false);

 fileNameLabel.setEnabled(false);

 //Get the file name from the text field and use

 // it to create a new Picture object. Display my

 // name in the image.

 fileName = fileNameField.getText();

 picture = new Picture(fileName);

 picture.addMessage("Dick Baldwin",10,20);

 //Get information that will be used to write the

 // output files.

 String inputPath = new File(fileName).

 getAbsolutePath();

 int posDot = inputPath.lastIndexOf('.');

 outputPath = inputPath.substring(0,posDot);

 //Write the first copy of the output backup

 // file before any processing is done.

 picture.write(outputPath

 + "BAK" + writeCounter++ + ".bmp");

 //Get filename extension. It will be used later

 // to write the final output file.

 extension = inputPath.substring(posDot);

 //Decorate the GUI.

 setTitle("Copyright 2009, R.G.Baldwin");

 //Create the picture that will be processed.

 // Note that the original image file is not

 // modified by this program.

 int pictureWidth = picture.getWidth();

 int pictureHeight = picture.getHeight();

 display = new Picture(

 pictureWidth,pictureHeight);

 //Draw the initial display.

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 display.show();

 //Adjust the width of the GUI to match the width

 // of the display if possible. Then relocate the

 // GUI to a position immediately below the

 // display.

 //Establish the preferred size now that the

 // input file name has been entered.

 pack();

 int packedHeight = getHeight();

 int packedWidth = getWidth();

 if((pictureWidth + 7) >= packedWidth){

 //Make the width of the GUI the same as the

 // width of the display.

 setSize(pictureWidth + 7,packedHeight);

 }//Else, just leave the GUI at its current size.

 //Put the GUI in its new location immediately

 // below the display.

 setLocation(0,pictureHeight + 30);

 //Enable the sliders and the buttons.

 sliderA.setEnabled(true);

 sliderB.setEnabled(true);

 sliderC.setEnabled(true);

 sliderD.setEnabled(true);

 sliderE.setEnabled(true);

 buttonA.setEnabled(true);

 buttonB.setEnabled(true);

 buttonC.setEnabled(true);

 writeButton.setEnabled(true);

 }//end actionPerformed

 }//end new ActionListener

);//end addActionListener

 //--//

 //Register an ActionListener on the writeButton.

 // Each time the user clicks the button, a backup bmp

 // file containing the current state of the display is

 // written into the directory from which the original

 // picture was read. The five most recent backup files

 // are saved. The names of the backup files are the

 // same as the name of the input file except that BAKn

 // is inserted immediately ahead of the extension

 // where n is a digit ranging from 0 to 4. The value

 // of n rolls over at 4 and starts back at 0.

 writeButton.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 display.write(outputPath

 + "BAK" + writeCounter++ + ".bmp");

 //Reset the writeCounter if it exceeds 4 to

 // conserve disk space.

 if(writeCounter > 4){

 writeCounter = 0;

 }//end if

 }//end action performed

 }//end newActionListener

);//end addActionListener

 //--//

 //Register an ActionListener on buttonA. This button

 // and this listener are here for future expansion.

 // For demonstration purposes, make the computer beep

 // when the user clicks any of the three buttons.

 buttonA.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 getToolkit().getDefaultToolkit().beep();

 }//end action performed

 }//end newActionListener

);//end addActionListener

 //--//

 //Register an ActionListener on buttonB. This button

 // and this listener are here for future expansion.

 buttonB.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 getToolkit().getDefaultToolkit().beep();

 }//end action performed

 }//end newActionListener

);//end addActionListener

 //--//

 //Register an ActionListener on buttonC. This button

 // and this listener are here for future expansion.

 buttonC.addActionListener(

 new ActionListener(){

 public void actionPerformed(ActionEvent e){

 getToolkit().getDefaultToolkit().beep();

 }//end action performed

 }//end newActionListener

);//end addActionListener

 //--//

 //Register a WindowListener that will respond when the

 // user clicks the large X in the upper-right corner

 // of the GUI. This event handler will write the final

 // state of the display into an output file of the

 // same type as the original input file. The name will

 // be the same except that the word FINAL will be

 // inserted immediately ahead of the extension.

 addWindowListener(

 new WindowAdapter(){

 public void windowClosing(WindowEvent e){

 display.write(outputPath + "FINAL" + extension);

 System.exit(0);

 }//end windowClosing

 }//end new WindowAdapter

);//end addWindowListener

 //--//

 //Register a ChangeListener object on sliderA.

 //Each time sliderA fires a ChangeEvent, this event

 // handler creates a new display as a copy of the

 // original picture and calls a method named

 // handleSliderABandC. You can modify the code in this

 // listener, the listeners for the other sliders, and

 // the listeners for the buttons to customize the

 // behavior of the program to meet your needs.

 sliderA.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on the display.

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderABandC();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--//

 //Register a ChangeListener object on sliderB.

 //Each time sliderB fires a ChangeEvent, this event

 // handler creates a new display as a copy of the

 // original picture and calls a method named

 // handleSliderABandC.

 sliderB.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on the display.

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderABandC();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--//

 //Register a ChangeListener object on sliderC.

 //Each time sliderC fires a ChangeEvent, this event

 // handler creates a new display as a copy of the

 // original picture and calls a method named

 // handleSliderABandC.

 sliderC.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on the display.

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 handleSliderABandC();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--//

 //This slider not used

 //Register a ChangeListener object on sliderD.

 //Each time sliderD fires a ChangeEvent, this event

 // handler creates a new display as a copy of the

 // original picture and calls a method named

 // handleSliderD. Note that this is a different

 // method than the method called by the three

 // previous listener objects.

 sliderD.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 //Draw a new copy of the picture on the display.

 graphics = display.getGraphics();

 graphics.drawImage(picture.getImage(),0,0,null);

 getToolkit().getDefaultToolkit().beep();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--//

 //This slider not used.

 //Register a ChangeListener object on sliderE.

 //Each time sliderE fires a ChangeEvent, this event

 // handler causes the computer to beep solely to

 // demonstrate that the slider is alive. Note that the

 // beep occurs at the end of the slider travel.

 sliderE.addChangeListener(

 new ChangeListener(){

 public void stateChanged(ChangeEvent e){

 getToolkit().getDefaultToolkit().beep();

 }//end stateChanged

 }//end new ChangeListener

);//end addChangeListener

 //--//

 }//end constructor

 //--//

 /*

 This method makes it possible for the user to perform

 HSB color editing on a digital photo. The method is

 called each time any one of the the Hue, Sat, or Bright

 sliders fires a ChangeEvent. Events are fired when the

 user moves the sliders.

 Immediately before this method is called, a new

 display is created, which is a copy of the original

 picture. This method operates only on the display. It

 does not modify the original picture.

 Each time this method is called, it gets the value of

 each slider and uses that value to modify the

 corresponding hue, saturation, and brightness property

 for every pixel in the image currently residing in the

 display.

 Basically, for each pixel, the method does the

 following:

 1. Gets the red, green, and blue values from the native

 RGB color model data for the pixel.

 2. Converts the RGB values into HSB values.

 3. Modifies the HSB values independently of one another

 using the current slider values.

 4. Converts the modified HSB values back to RGB values.

 5. Uses the RGB values to set the modified color into

 the pixel.

 The method is synchronized to eliminate the possiblilty

 that it may be called on two threads concurrently.

 */

 private synchronized void handleSliderABandC(){

 pixels = display.getPixels();

 float[] hsbvals = new float[3];//HSB pixel values.

 //Process every pixel in the image using the same

 // algorithm.

 for(int cnt = 0;cnt < pixels.length;cnt++){

 //Get the red, green, and blue values for the

 // current pixel.

 red = pixels[cnt].getRed();

 green = pixels[cnt].getGreen();

 blue = pixels[cnt].getBlue();

 //Get the three HSB color model values that

 // correspond to the current pixel color expressed

 // in the RGB color model. When the method returns,

 // the three HSB values have been placed in the

 // three-element array referred to by hsbvals in the

 // order hue, saturation, and brightness.

 Color.RGBtoHSB(red,green,blue,hsbvals);

 //Modify the hue value for the pixel based on the

 // current value of the Hue slider. Note that this

 // statement performs addition instead of

 // multiplication.

 hsbvals[0] = (float)(hsbvals[0] +

 sliderA.getValue()/360.0);//hue

 //Modify the saturation value for the pixel based

 // on the current value of the Sat slider. Note

 // that multiplication is used here.

 hsbvals[1] = (float)(hsbvals[1] *

 sliderB.getValue()/100.0);//saturation

 //If the computed value is greter than 1.0, clip it

 // at 1.0.

 if(hsbvals[1] > 1.0) hsbvals[1] = (float)1.0;

 //Modify the brightness value for the pixel based

 // on the current value of the Bright slider. Once

 // again, multiplication is used here.

 hsbvals[2] = (float)(hsbvals[2] *

 sliderC.getValue()/100.0);//brightness

 if(hsbvals[2] > 1.0) hsbvals[2] = (float)1.0;

 //Convert the HSB color values back into RGB color

 // values.

 int color = Color.HSBtoRGB(

 hsbvals[0],hsbvals[1],hsbvals[2]);

 //Use the RGB color values to set the modified color

 // in the pixel.

 pixels[cnt].setColor(new Color(color));

 }//end for loop

 //Repaint the display.

 display.repaint();

 }//end handleSliderABandC

 //--//

}//end class HsbEdit02

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

