
ITSE 2317 Study Guide

Changing the Default Background Image for a World
Object

Learn how to modify Ericson's World class, causing it to accept the name of an image
file as a parameter to the constructor. The image from the file replaces the default white
background of the world object.

Published: July 26, 2009
By Richard G. Baldwin

Java Programming Notes # 2700

 Preface
o General
o Viewing tip

 Figures
 Listings

o Supplemental material
 General background information
 Discussion and sample code

o Program Java2700a
o Program Java2700b

 Resources
 Complete program listings
 Copyright
 About the author

Preface

General

This is the first lesson in a special series of lessons prepared for the specific benefit of
students enrolled in my ITSE 2317, Java Programming (Intermediate) class, at Austin
Community College. However, I am publishing the lessons online for the benefit on
others who may have an interest in them as well.

Many of the sample programs in this series require the student to modify the classes in
Ericson's class library. While I normally don't consider it good programming practice to
modify the classes in a standard class library, the objective here is to encourage
students to study the source code for the classes in Ericson's library in sufficient depth

mailto:Baldwin@DickBaldwin.com
http://www.austincc.edu/baldwin/
http://www.developer.com/java/other/article.php/3782471

to understand why objects instantiated from those classes behave as they do. Being
able to modify a class to modify the behavior of instantiated objects is one indication
that the student understands the class.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Screen output from program Java2700a.
 Figure 2. Screen output from program Java2700b.

Listings

 Listing 1. Source code for program Java2700a.
 Listing 2. Source code for program Java2700b.
 Listing 3. Add a constructor and an instance variable to the World class.
 Listing 4. Modification to the method named initWorld in the World class.
 Listing 5. Complete listing of the modified World class.

Supplemental material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

By default, an object instantiated from Ericson's World class has a white
background. In this lesson, I will explain how to add a constructor to the World class,
which accepts a String parameter. The string is used as the name of an image
file. The default white background is replaced by the image from the image file.

Discussion and sample code

Program Java2700a

I will begin by showing a program that creates a World object of a specified size from
Ericson's class library, adds a Turtle object to the world, and causes the turtle to
move. The source code for the program named Java2700a is shown in its entirety in
Listing 1.

Listing 1. Source code for program Java2700a.

http://www.dickbaldwin.com/toc.htm

/*File Java2700a Copyright 2009 R.G.Baldwin

 *Revised 07/26/09

Illustrates the normal result of placing a turtle in a

World object and causing it to move forward. Note the

white background.

***/

public class Java2700a{

 public static void main(String[] args){

 World mars = new World(200,250);

 Turtle fred = new Turtle(mars);

 fred.forward();

 }//end main method

}//end class Java2700a

The screen output produced by this program is shown in Figure 1.

Figure 1. Screen output from program Java2700a.

As you can see, Figure 1 shows the default white background produced by the World
class in the Ericson's library. The size matches the constructor parameters in Listing 1.

Program Java2700b

Objective and methodology

The objective of the program was to make it possible for the user to:

 Instantiate a new World object.
 Cause an image specified by the string name of an image file to replace the

default white background of the World object.
 Cause the name of the image file to be displayed in the upper-left corner of the

World object.

 Cause the name, height, and width of the image to be displayed on the standard
output device.

The methodology for accomplishing this was to modify the World class in Ericson's
class library.

Source code

The source code for the program named Java2700b is shown in Listing 2. This
program illustrates the use of a modified version of Ericson's World class to cause it to
accept a String constructor parameter and to use the string as the name of an image
file. The image file is used to replace the default white background in the World object
with the image extracted from the image file.

Listing 2. Source code for program Java2700b.

/*File Java2700b Copyright 2009 R.G.Baldwin

 *Revised 07/26/09

Illustrates modification of the World class to cause it to

accept a String constructor parameter and to use the

string as the name of an image file. The image file is

used to replace the default white background in the World

object with the image extracted from the image file.

***/

public class Java2700b{

 public static void main(String[] args){

 //Note: The modified World class has been successfully

 // tested with all of the following instantiation

 // statements.

 //World mars = new World();

 //World mars = new World(true);

 //World mars = new World(200,250);

 World mars = new World("java2700bImg.jpg");

 //Add a turtle to the world and make it move.

 Turtle fred = new Turtle(mars);

 fred.forward();

 }//end main method

}//end class Java2700b

The screen output

The screen output from this program for the specified image file is shown in Figure
2. As you can see, the green turtle is drawn on background image of a butterfly. The
size of the world is determined by the size of the image.

Figure 2. Screen output from program Java2700b.

Note also that the name of the image file is displayed in the upper-left corner of the
world.

The first modification to the World class

The modified World class is shown in Listing 5 near the end of the lesson. The World
class was modified in two areas. The first modification is shown by the code fragment
in Listing 3.

Listing 3. Add a constructor and an instance variable to the World class.

 private String fileName = null;

 /**

 *New constructor that accepts the name of

an image

 * file as a String. The image file is

ultimately used

 * as the background image for the World

object.

 */

 public World(String fileName){

 this.fileName = fileName;

 initWorld(true);

 }//end constructor

Listing 3 shows the addition of a new constructor to the World class along with the
addition of a new instance variable named fileName. The new constructor accepts an
incoming String parameter and saves it in the new instance variable. Then the
constructor calls the method named initWorld to cause the new World object to be
initialized.

The second modification to the World class

The second modification is shown in Listing 4.

Listing 4. Modification to the method named initWorld in the World class.

 private void initWorld(boolean visibleFlag){

 //Modifications to deal with the image

file.

 // create the background picture

 if(fileName == null){

 picture = new Picture(width,height);

 }else{

 picture = new Picture(fileName);

 width = picture.getWidth();

 height = picture.getHeight();

 picture.addMessage(fileName,10,20);

 System.out.println(picture);

 }//end else

Listing 4 shows a modification that was made to the method named initWorld to deal
with the new constructor and the image file.

Behavior same as before

If the value of fileName is null, meaning that the new constructor was not called, the
behavior is exactly the same as before.

New behavior

If the value of fileName is not null, meaning that the new constructor was called, Listing
4 uses the name of the file to create a new Picture object. Then the width and height
values of the Picture object are stored in the existing instance variables named width
and height.

Following this, the existing addMessage method of the Picture class is called to cause
the name of the image file to be displayed in the upper-left corner of the image as
shown in Figure 2.

Finally, the string returned by the toString method of the Picture class is displayed on
the standard output device. In the case shown above, that string was as follows:

Picture, filename java2700bImg.jpg height 497 width 422

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 340 Multimedia Programming with Java, Getting Started
 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
 348 The Pen and PathSegment Classes: Multimedia Programming with Java
 349 A Pixel Editor Program in Java: Multimedia Programming with Java
 350 3D Displays, Color Distance, and Edge Detection
 351 A Slider-Controlled Softening Program for Digital Photos
 352 Adding Animated Movement to Your Java Application
 353 A Slider-Controlled Sharpening Program for Digital Photos
 354 The DigitalPicture Interface
 355 The HSB Color Model
 356 The show Method and the PictureFrame Class
 357 An HSB Color-Editing Program for Digital Photos
 358 Applying Affine Transforms to Picture Objects
 359 Creating a lasso for editing digital photos in Java
 360 Wrapping Up the SimplePicture Class
 361 A Temperature and Tint Editing Program for Digital Photos
 362 Getting Started with the PictureExplorer Class
 363 Redeye Correction in Digital Photographs
 364 Building the Information Panel for the PictureExplorer GUI
 365 Using Flood-Fill in Java Programs

Complete program listings

A complete listing of the modified World class is shown in Listing 5 below.

Listing 5. Complete listing of the modified World class.

import javax.swing.*;

import java.util.List;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.Observer;

import java.awt.*;

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761
http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671
http://www.developer.com/java/other/article.php/3806156
http://www.dickbaldwin.com/java/Java353.htm
http://www.dickbaldwin.com/java/Java354.htm
http://www.dickbaldwin.com/java/Java355.htm
http://www.dickbaldwin.com/java/Java356.htm
http://www.dickbaldwin.com/java/Java357.htm
http://www.dickbaldwin.com/java/Java358.htm
http://www.dickbaldwin.com/java/Java359.htm
http://www.dickbaldwin.com/java/Java360.htm
http://www.dickbaldwin.com/java/Java361.htm
http://www.dickbaldwin.com/java/Java362.htm
http://www.dickbaldwin.com/java/Java363.htm
http://www.dickbaldwin.com/java/Java364.htm
http://www.dickbaldwin.com/java/Java365.htm

/**

 *Note: This version of Ericson's World class

was modified

 *to make it possible to specify the name of

an image file

 *when the World object is instantiated. The

image is then

 *used as the background for the world in

place of the

 *default blank white background.

 *

 * Class to represent a 2d world that can hold

turtles and

 * display them

 *

 * Copyright Georgia Institute of Technology

2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class World extends JComponent

implements ModelDisplay

{

 ////////////////// fields

///////////////////////

 /** should automatically repaint when model

changed */

 private boolean autoRepaint = true;

 /** the background color for the world */

 private Color background = Color.white;

 /** the width of the world */

 private int width = 640;

 /** the height of the world */

 private int height = 480;

 /** the list of turtles in the world */

 private List<Turtle> turtleList = new

ArrayList<Turtle>();

 /** the JFrame to show this world in */

 private JFrame frame = new JFrame("World");

 /** background picture */

 private Picture picture = null;

 ////////////////// the constructors

///////////////

 private String fileName = null;

 /**

 *New constructor that accepts the name of

an image

 * file as a String. The image file is

ultimately used

 * as the background image for the World

object.

 */

 public World(String fileName){

 this.fileName = fileName;

 initWorld(true);

 }//end constructor

 /**

 * Constructor that takes no arguments

 */

 public World()

 {

 // set up the world and make it visible

 initWorld(true);

 }

 /**

 * Constructor that takes a boolean to

 * say if this world should be visible

 * or not

 * @param visibleFlag if true will be

visible

 * else if false will not be visible

 */

 public World(boolean visibleFlag)

 {

 initWorld(visibleFlag);

 }

 /**

 * Constructor that takes a width and height

for this

 * world

 * @param w the width for the world

 * @param h the height for the world

 */

 public World(int w, int h)

 {

 width = w;

 height = h;

 // set up the world and make it visible

 initWorld(true);

 }

 ///////////////// methods

///////////////////////////

 /**

 * Method to initialize the world

 * @param visibleFlag the flag to make the

world

 * visible or not

 */

 private void initWorld(boolean visibleFlag)

 {

 //Modifications to deal with the image

file.

 // create the background picture

 if(fileName == null){

 picture = new Picture(width,height);

 }else{

 picture = new Picture(fileName);

 width = picture.getWidth();

 height = picture.getHeight();

 picture.addMessage(fileName,10,20);

 System.out.println(picture);

 }//end else

 // set the preferred size

 this.setPreferredSize(new

Dimension(width,height));

 // add this panel to the frame

 frame.getContentPane().add(this);

 // pack the frame

 frame.pack();

 // show this world

 frame.setVisible(visibleFlag);

 }

 /**

 * Method to get the graphics context for

drawing on

 * @return the graphics context of the

background picture

 */

 public Graphics getGraphics() { return

picture.getGraphics(); }

 /**

 * Method to clear the background picture

 */

 public void clearBackground() { picture =

new Picture(width,height); }

 /**

 * Method to get the background picture

 * @return the background picture

 */

 public Picture getPicture() { return

picture; }

 /**

 * Method to set the background picture

 * @param pict the background picture to use

 */

 public void setPicture(Picture pict) {

picture = pict; }

 /**

 * Method to paint this component

 * @param g the graphics context

 */

 public synchronized void

paintComponent(Graphics g)

 {

 Turtle turtle = null;

 // draw the background image

 g.drawImage(picture.getImage(),0,0,null);

 // loop drawing each turtle on the

background image

 Iterator iterator = turtleList.iterator();

 while (iterator.hasNext())

 {

 turtle = (Turtle) iterator.next();

 turtle.paintComponent(g);

 }

 }

 /**

 * Metod to get the last turtle in this

world

 * @return the last turtle added to this

world

 */

 public Turtle getLastTurtle()

 {

 return (Turtle)

turtleList.get(turtleList.size() - 1);

 }

 /**

 * Method to add a model to this model

displayer

 * @param model the model object to add

 */

 public void addModel(Object model)

 {

 turtleList.add((Turtle) model);

 if (autoRepaint)

 repaint();

 }

 /**

 * Method to check if this world contains

the passed

 * turtle

 * @return true if there else false

 */

 public boolean containsTurtle(Turtle turtle)

 {

 return (turtleList.contains(turtle));

 }

 /**

 * Method to remove the passed object from

the world

 * @param model the model object to remove

 */

 public void remove(Object model)

 {

 turtleList.remove(model);

 }

 /**

 * Method to get the width in pixels

 * @return the width in pixels

 */

 public int getWidth() { return width; }

 /**

 * Method to get the height in pixels

 * @return the height in pixels

 */

 public int getHeight() { return height; }

 /**

 * Method that allows the model to notify

the display

 */

 public void modelChanged()

 {

 if (autoRepaint)

 repaint();

 }

 /**

 * Method to set the automatically repaint

flag

 * @param value if true will auto repaint

 */

 public void setAutoRepaint(boolean value) {

autoRepaint = value; }

 /**

 * Method to hide the frame

 */

// public void hide()

// {

// frame.setVisible(false);

// }

 /**

 * Method to show the frame

 */

// public void show()

// {

// frame.setVisible(true);

// }

 /**

 * Method to set the visibility of the world

 * @param value a boolean value to say if

should show or hide

 */

 public void setVisible(boolean value)

 {

 frame.setVisible(value);

 }

 /**

 * Method to get the list of turtles in the

world

 * @return a list of turtles in the world

 */

 public List getTurtleList()

 { return turtleList;}

 /**

 * Method to get an iterator on the list of

turtles

 * @return an iterator for the list of

turtles

 */

 public Iterator getTurtleIterator()

 { return turtleList.iterator();}

 /**

 * Method that returns information about

this world

 * in the form of a string

 * @return a string of information about

this world

 */

 public String toString()

 {

 return "A " + getWidth() + " by " +

getHeight() +

 " world with " + turtleList.size() + "

turtles in it.";

 }

} // end of World class

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

