A Temperature and Tint Editing Program for Digital
Photos

Published: March 19, 2009
By Richard G. Baldwin

Java Programming Notes # 361

Note: The text for this lesson is incomplete. However, | am publishing the source code
for the program in case you find it useful.

Resources

Creative Commons Attribution 3.0 United States License

Media Computation book in Java - numerous downloads available
Introduction to Computing and Programming with Java: A Multimedia Approach
DrJava download site

DrJava, the JavaPLT group at Rice University

DrJava Open Source License

The Essence of OOP using Java, The this and super Keywords
Threads of Control

Painting in AWT and Swing

Wikipedia Turtle Graphics

ISA or HasA

Vector Cad-Cam Xl Lathe Tutorial

Classification of 3D to 2D projections

Color model from Wikipedia

Light and color: an introduction by Norman Koren

Color Principles - Hue, Saturation, and Value

200 Implementing the Model-View-Controller Paradigm using Observer and
Observable

300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
302 Java 2D Graphics, The Point2D Class

304 Java 2D Graphics, The Graphics2D Class

306 Java 2D Graphics, Simple Affine Transforms

308 Java 2D Graphics, The Shape Interface, Part 1

310 Java 2D Graphics, The Shape Interface, Part 2

312 Java 2D Graphics, Solid Color Fill

314 Java 2D Graphics, Gradient Color Fill

316 Java 2D Graphics, Texture Fill

318 Java 2D Graphics, The Stroke Interface

320 Java 2D Graphics, The Composite Interface and Transparency
322 Java 2D Graphics, The Composite Interface, GradientPaint, and
Transparency

e 324 Java 2D Graphics, The Color Constructors and Transparency



mailto:Baldwin@DickBaldwin.com
http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://en.wikipedia.org/wiki/Color_model
../Light%20and%20color:%20%20an%20introduction
http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html#(HSV)
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm

e 400 Processing Image Pixels using Java, Getting Started

402 Processing Image Pixels using Java, Creating a Spotlight

404 Processing Image Pixels Using Java: Controlling Contrast and Brightness
406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion
408 Processing Image Pixels, Performing Convolution on Images

410 Processing Image Pixels, Understanding Image Convolution in Java

412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2
416 Processing Image Pixels, An Improved Image-Processing Framework in
Java

418 Processing Image Pixels, Creating Visible Watermarks in Java

450 A Framework for Experimenting with Java 2D Image-Processing Filters
452 Using the Java 2D LookupOp Filter Class to Process Images

454 Using the Java 2D AffineTransformOp Filter Class to Process Images
456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble
Images

458 Using the Java 2D BandCombineOp Filter Class to Process Images

460 Using the Java 2D ConvolveOp Filter Class to Process Images

462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to
Process Images

506 JavaBeans, Introspection

2100 Understanding Properties in Java and C#

2300 Generics in J2SE, Getting Started

340 Multimedia Programming with Java, Getting Started

342 Getting Started with the Turtle Class: Multimedia Programming with Java
344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
348 The Pen and PathSegment Classes: Multimedia Programming with Java
349 A Pixel Editor Program in Java: Multimedia Programming with Java

350 3D Displays, Color Distance, and Edge Detection

351 A Slider-Controlled Softening Program for Digital Photos

352 Adding Animated Movement to Your Java Application

353 A Slider-Controlled Sharpening Program for Digital Photos

354 The DigitalPicture Interface

355 The HSB Color Model

356 The show Method and the PictureFrame Class

357 An HSB Color-Editing Program for Digital Photos

358 Applying Affine Transforms to Picture Objects

359 Creating a lasso for editing digital photos in Java

360 Wrapping Up the SimplePicture Class

Complete program listing

A complete listings of the program is shown in Listing 1 below.


http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856
http://www.developer.com/java/other/article.php/3696676
http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761
http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671
http://www.developer.com/java/other/article.php/3806156
http://www.dickbaldwin.com/java/Java353.htm
http://www.dickbaldwin.com/java/Java354.htm
http://www.dickbaldwin.com/java/Java355.htm
http://www.dickbaldwin.com/java/Java356.htm
http://www.dickbaldwin.com/java/Java357.htm
http://www.dickbaldwin.com/java/Java358.htm
http://www.dickbaldwin.com/java/Java359.htm
http://www.dickbaldwin.com/java/Java360.htm

Listing 1. Source code for the program named TemperatureTintO1.

/*File TemperatureTint0l Copyright 2009 R.G.Baldwin
Need to update all comments. However, the code has been
tested and confirmed to work.

The purpose of the program is to show you how to perform
HSB color editing on your digital photos.

The program allows the user to specify an image file to be
edited. The user is then presented with a display of the
image being edited and a GUI containing three sliders, a
Write button, and a text field for entry of the file name.

The sliders are labeled Hue, Sat, and Bright. The labels
are abbreviations for Hue, Saturation, and Brightness,
which are the words behind the nomenclature for the HSB
color model.

The user can change any combination of hue, saturation,
and brightness of the image by adjusting the sliders.

At any point, the user can click a Write button on the GUI
and write the processed image in its current state into a
backup file. (Note that only the most recent five backup
files are saved.) When the user terminates the program,
the final processed image is written into a final output
file.

The template program requires access to Ericson's
multimedia library.

Input files of type jpg, bmp, png are supported. The input
image file is not modified.

If the input file is in the same directory as the program
files, only the name and extension must be entered into
the text field. Otherwise, a complete path and file name
with extension must be entered.

Note, that this program was designed to teach

programming and image processing concepts. It was not
designed to compete on a speed or convenience basis with
commercially-available photograph processing programs such
as Adobe's Photoshop Elements.

The GUI initially appears in the upper-left corner of the
screen. At this point, the sliders and the buttons are all
disabled. When the user enters the name of the input file,
a display of the image contained in that file appears in
the upper-left corner of the screen and the GUI is
relocated to a position immediately below the display.

When the GUI is relocated to the position immediately
below the display, the sliders and the buttons are all




enabled. and the text field is disabled. The width of the
GUI is changed to match the width of the display if
possible.

Clicking the large X in the upper-right corner of the
display does not terminate the program. It simply hides
the display, which is of no practical use.

The program is terminated by clicking the large X in the
upper-right corner of the GUI. Before terminating, the
program writes an output file containing the final state
of the display in the same format as the input file. The
name of the output file is the same as the name of the
input file except that the word FINAL is inserted
immediately ahead of the extension. The final output file
(and all of the backup files) are written into the same
directory from which the image file was originally read.

Tested using Windows Vista Home Premium Edition,
Java 1.6x, and the version of Ericson's multimedia library

contained in bookClassesl0-1-07.zip.
*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k*k***********************/

import java.awt.Graphics;

import Jjava.awt.Image;

import java.awt.BorderLayout;

import java.awt.Color;

import java.awt.FlowLayout;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;

import javax.swing.JFrame;

import javax.swing.JPanel;

import Jjavax.swing.JSlider;

import javax.swing.JLabel;

import javax.swing.JButton;

import javax.swing.JTextField;

import javax.swing.event.Changelistener;
import javax.swing.event.ChangeEvent;
import javax.swing.WindowConstants;

import java.io.File;

public class TemperatureTint0l extends JFrame
//The following constants are used to configure the GUI.
// You can control whether or not the sliders and
// buttons appear in the GUI, along with the contents of
// various labels by changing the contents of the
// following constants.

//SLIDERS

//Change the following boolean values to false to
// selectively exclude sliders

private final boolean sliderAPanellInclude = true;




private final boolean sliderBPanelInclude = true;
private final boolean sliderCPanelInclude = true;
private final boolean sliderDPanelInclude = true;
private final boolean sliderEPanelInclude = true;
//Change the following int values to change the limits
// and initial positions of the sliders.

private final int sliderAMin = 0;//minimum
private final int sliderAMax = 360;//maximum
private final int sliderAInit = 0;//initial value
private final int sliderBMin = 0;

private final int sliderBMax = 400;

private final int sliderBInit = 100;

private final int sliderCMin = O0;

private final int sliderCMax = 200;

private final int sliderCInit = 100;

private final int sliderDMin = -100;

private final int sliderDMax = 100;

private final int sliderDInit = 0;

private final int sliderEMin = -100;

private final int sliderEMax = 100;

private final int sliderEInit = 0;

//Change the following int values to change the tick
// spacing on the sliders.

private final int sliderAMajorTickSpacing = 60;
private final int sliderAMinorTickSpacing = 10;
private final int sliderBMajorTickSpacing = 50;
private final int sliderBMinorTickSpacing = 10;
private final int sliderCMajorTickSpacing = 50;
private final int sliderCMinorTickSpacing = 10;
private final int sliderDMajorTickSpacing = 50;
private final int sliderDMinorTickSpacing = 10;
private final int sliderEMajorTickSpacing = 50;
private final int sliderEMinorTickSpacing = 10;

//Change these string values to change the labels
// displayed to the left of the sliders.

private final String sliderAlLabel = "Hue";

private final String sliderBLabel = "Saturation";
private final String sliderCLabel = "Brightness";
private final String sliderDLabel = "Temperature";
private final String sliderELabel = "Green Tint";
//BUTTONS

//Change the following value to false to exclude all
// three buttons as a group.

//None of the three buttons were used.
private final boolean buttonPanelInclude = false;

//Change the following values to false to selectively




// exclude individual
private final boolean
private final boolean
private final boolean

//Change these string
// buttons

private final String
private final String
private final String

buttons
buttonAInclude =
buttonBInclude
buttonCInclude

values to change

true;
true;
true;

the text on the

buttonALabel = "buttonA";
buttonBLabel = "buttonB";
buttonCLabel = "buttonC";

/ /MISCELLANEOQUS
//Change this string
// the text field.
private final JLabel

to change the text to the left of

fileNamelLabel
new JLabel ("File Name:

")

//Change this string to change the path and name of the

// default input file.

private final String defaultFileName
"TemperatureTint0l.jpg";

//Components for construction of the GUI.
private final JPanel mainPanel new JPanel () ;

JPanel
JPanel
JPanel

northPanel
centerPanel
southPanel

final
final
final

new JPanel () ;
new JPanel () ;
new JPanel ();

private
private
private

final JPanel sliderAPanel
new JPanel (new FlowLayout (FlowLayout.
final JPanel sliderBPanel
new JPanel (new FlowLayout (FlowLayout.
final JPanel sliderCPanel
new JPanel (new FlowLayout (FlowLayout.
final JPanel sliderDPanel
new JPanel (new FlowLayout (FlowLayout.
final JPanel sliderEPanel
new JPanel (new FlowLayout (FlowLayout.RIGHT)) ;

private
RIGHT) ) ;

private
RIGHT) ) ;

private
RIGHT) ) ;

private
RIGHT) ) ;

private

private final JPanel buttonPanel = new JPanel ();
private final JButton writeButton =
new JButton ("Write") ;
private final JButton buttonA =
new JButton (buttonALabel) ;
private final JButton buttonB =

new JButton (buttonBLabel) ;

new JButton (buttonCLabel) ;

private final JButton buttonC

//This text field is preloaded with the name of a test
// file to make testing and debugging easier.
private JTextField fileNameField




new JTextField (defaultFileName) ;

//Change the int values at the beginning of the program
// to reconfigure these sliders.
private final JSlider sliderA =

new JSlider(sliderAMin, sliderAMax,sliderAInit) ;
private final JSlider sliderB =

new JSlider (sliderBMin, sliderBMax,sliderBInit) ;
private final JSlider sliderC =

new JSlider(sliderCMin,sliderCMax,sliderCInit);
private final JSlider sliderD =

new JSlider (sliderDMin, sliderDMax,sliderDInit) ;
private final JSlider sliderE =

new JSlider (sliderEMin, sliderEMax,sliderEInit) ;

//A reference to the original Picture object will be
// stored here.

private Picture picture = null;

//A reference to a modified copy of the original

// Picture object will be stored here.

private Picture display = null;

//Miscellaneous working variables.
private Image image = null;
private Graphics graphics = null;

private Pixel pixel = null;
private int red = 0;

private int green = 0;
private int blue = 0;
private int writeCounter = 0;

private Pixel[] pixels = null;

private String fileName = null;
private String outputPath = null;
private String extension = null;

public static void main(String[] args) {
new TemperatureTint01l () ;
}//end main method

public TemperatureTint01l () {//constructor
//A1ll close operations are handled in a WindowListener
// object.
setDefaultCloseOperation (
WindowConstants.DO NOTHING ON CLOSE) ;

//Put decorations on the sliders. Change the constants
// at the beginning of the program to control major

// and minor tick spacing.
sliderA.setMajorTickSpacing
sliderA.setMinorTickSpacing
sliderA.setPaintTicks (true) ;

sliderAMajorTickSpacing) ;
sliderAMinorTickSpacing) ;

—_




sliderA.setPaintLabels (true) ;

sliderB.setMajorTickSpacing(sliderBMajorTickSpacing) ;
sliderB.setMinorTickSpacing(sliderBMinorTickSpacing) ;
sliderB.setPaintTicks (true) ;
sliderB.setPaintLabels (true) ;

sliderC.setMajorTickSpacing(sliderCMajorTickSpacing) ;
sliderC.setMinorTickSpacing(sliderCMinorTickSpacing) ;
sliderC.setPaintTicks (true) ;
sliderC.setPaintLabels (true) ;

sliderD.setMajorTickSpacing(sliderDMajorTickSpacing) ;
sliderD.setMinorTickSpacing(sliderDMinorTickSpacing) ;
sliderD.setPaintTicks (true) ;
sliderD.setPaintLabels (true) ;

sliderE.setMajorTickSpacing(sliderEMajorTickSpacing) ;
sliderE.setMinorTickSpacing (sliderEMinorTickSpacing) ;
sliderE.setPaintTicks (true) ;
sliderE.setPaintLabels (true) ;

//Construct the GUI working generally from the top
// down.
mainPanel.setLayout (new BorderLayout())

mainPanel.add (northPanel,BorderLayout.NORTH) ;
mainPanel.add (centerPanel,BorderLayout.CENTER) ;
mainPanel.add (southPanel,BorderLayout.SOUTH) ;

northPanel.setLayout (new BorderLayout()) ;

//Add sliders if the constants at the beginning of the
// program are true.
if (sliderAPanelInclude)
northPanel.add(sliderAPanel,BorderLayout.NORTH) ;
if (sliderBPanelInclude)
northPanel.add(sliderBPanel, BorderLayout.CENTER) ;
if (sliderCPanelInclude)
northPanel.add(sliderCPanel,BorderLayout.SOUTH) ;

centerPanel.setlLayout (new BorderLayout ()) ;

//Add more sliders if the constants at the beginning
// of the program are true.
if (sliderDPanellInclude)

centerPanel.add (sliderDPanel,BorderLayout .NORTH) ;
if (sliderEPanelInclude)

centerPanel.add(sliderEPanel, BorderLayout.CENTER) ;

//Add a panel containing from one to three buttons if
// the constant at the beginning of the program is
// true.
if (buttonPanelInclude)
centerPanel.add (buttonPanel, BorderLayout.SOUTH) ;




//Add buttons if the constants at the beginning of the
// program are true.

if (buttonAInclude) buttonPanel.add (buttonh) ;

if (buttonBInclude) buttonPanel.add (buttonB) ;

if (buttonCInclude) buttonPanel.add (buttonC) ;

//These components should always be added.
southPanel .add (writeButton) ;
southPanel.add (fileNameLabel) ;
southPanel.add (fileNameField) ;

sliderAPanel.add (new JLabel (sliderALabel)) ;
sliderAPanel .add(sliderd) ;

sliderBPanel.add (new JLabel (sliderBLabel)) ;
sliderBPanel.add(sliderB) ;

sliderCPanel.add (new JLabel (sliderCLabel)) ;
sliderCPanel.add(sliderC) ;

sliderDPanel.add (new JLabel (sliderDLabel)) ;
sliderDPanel.add(sliderD) ;

sliderEPanel.add (new JLabel (sliderELabel)) ;
sliderEPanel.add(sliderE) ;

//Disable the sliders and the buttons until the
// user enters the file name.
sliderA.setEnabled(false);

sliderB.setEnabled (false)
sliderC.setEnabled (false) ;
sliderD.setEnabled (false) ;
sliderE.setEnabled (false)

’

’

buttonA.setEnabled (false) ;
buttonB.setEnabled (false) ;
buttonC.setEnabled (false) ;
writeButton.setEnabled (false) ;

//Set the size of the GUI and display it in the upper-
// left corner of the screen. It will be moved later
// to a position immediately below the display of the
// picture.

getContentPane () .add (mainPanel) ;

pack();//Set to overall preferred size.

setVisible (true) ;

//Move the focus to the text field to make it easy
// for the user to enter the name of the input file.
fileNameField.requestFocus () ;

//Register a listener on the text field. When the user
// enters the file name in the text field, set

// everything up properly so that the program will

// function as an event-driven picture-manipulation




// program until the user clicks the large X in the

// upper-right of the GUI.

fileNameField.addActionListener (

new ActionListener () {
public void actionPerformed (ActionEvent e) {

//Disable the text field to prevent the user
// from entering anything else in it.
fileNameField.setEnabled(false) ;
fileNamelabel.setEnabled (false) ;

//Get the file name from the text field and use
// it to create a new Picture object. Display my
// name in the image.

fileName = fileNameField.getText () ;

picture = new Picture (fileName) ;
picture.addMessage ("Dick Baldwin",10,20);

//Get information that will be used to write the
// output files.
String inputPath = new File (fileName) .
getAbsolutePath () ;

int posDot = inputPath.lastIndexOf('.");
outputPath = inputPath.substring(0,posDot) ;
//Write the first copy of the output backup
// file before any processing is done.
picture.write (outputPath

+ "BAK" + writeCounter++ + ".bmp");

//Get filename extension. It will be used later
// to write the final output file.
extension = inputPath.substring (posDot) ;

//Decorate the GUI.
setTitle ("Copyright 2009, R.G.Baldwin");

//Create the picture that will be processed.
// Note that the original image file is not
// modified by this program.
int pictureWidth = picture.getWidth () ;
int pictureHeight = picture.getHeight ()
display = new Picture (
pictureWidth, pictureHeight) ;

//Draw the initial display.

graphics = display.getGraphics() ;
graphics.drawImage (picture.getImage(),0,0,null) ;
display.show () ;

//Adjust the width of the GUI to match the width
// of the display if possible. Then relocate the
// GUI to a position immediately below the

// display.

//Establish the preferred size now that the

// input file name has been entered.

pack () ;

int packedHeight = getHeight () ;




int packedWidth = getWidth () ;
if ((pictureWidth + 7) >= packedwWidth) {

//Make the width of the GUI the same as the

// width of the display.

setSize (pictureWidth + 7,packedHeight) ;
}//Else, just leave the GUI at its current size.
//Put the GUI in its new location immediately
// below the display.
setLocation (0, pictureHeight + 30);

//Enable the sliders and the buttons.
sliderA.setEnabled (true) ;

sliderB.setEnabled (true) ;
sliderC.setEnabled (true) ;
( )
( )

’

sliderD.setEnabled (true
sliderE.setEnabled (true

’

buttonA.setEnabled (true) ;
buttonB.setEnabled (true) ;
buttonC.setEnabled (true) ;

writeButton.setEnabled (true) ;

}//end actionPerformed
}//end new ActionListener
);//end addActionListener

//Register an Actionlistener on the writeButton.
// Each time the user clicks the button, a backup bmp
// file containing the current state of the display is
// written into the directory from which the original
// picture was read. The five most recent backup files
// are saved. The names of the backup files are the
// same as the name of the input file except that BAKn
// 1s inserted immediately ahead of the extension
// where n is a digit ranging from 0 to 4. The value
// of n rolls over at 4 and starts back at 0.
writeButton.addActionListener (
new ActionListener () {
public void actionPerformed (ActionEvent e) {
display.write (outputPath
+ "BAK" + writeCounter++ + ".bmp");

//Reset the writeCounter if it exceeds 4 to

// conserve disk space.

if (writeCounter > 4) {

writeCounter = 0;
}//end if
}//end action performed
}//end newActionListener

);//end addActionlListener

//Register an ActionListener on buttonA. This button
// and this listener are here for future expansion.
// For demonstration purposes, make the computer beep




// when the user clicks any of the three buttons.
buttonA.addActionListener (
new ActionListener () {
public void actionPerformed (ActionEvent e) {
getToolkit () .getDefaultToolkit () .beep() ;
}//end action performed
}//end newActionListener
);//end addActionlListener

//Register an ActionListener on buttonB. This button
// and this listener are here for future expansion.
buttonB.addActionListener (
new ActionListener () {
public void actionPerformed (ActionEvent e) {
getToolkit () .getDefaultToolkit () .beep() ;
}//end action performed
}//end newActionListener
);//end addActionListener

//Register an ActionlListener on buttonC. This button
// and this listener are here for future expansion.
buttonC.addActionListener (
new ActionListener () {
public void actionPerformed (ActionEvent e) {
getToolkit () .getDefaultToolkit () .beep() ;
}//end action performed
}//end newActionListener
);//end addActionListener

//Register a WindowListener that will respond when the
// user clicks the large X in the upper-right corner
// of the GUI. This event handler will write the final
// state of the display into an output file of the
// same type as the original input file. The name will
// be the same except that the word FINAL will be
// inserted immediately ahead of the extension.
addWindowListener (
new WindowAdapter () {
public void windowClosing (WindowEvent e) {
display.write (outputPath + "FINAL" + extension);
System.exit (0) ;
}//end windowClosing
}//end new WindowAdapter
);//end addWindowListener

//Register a ChangelListener object on sliderA.

//Each time sliderA fires a ChangeEvent, this event

// handler creates a new display as a copy of the

// original picture and calls a method named

// handleSliderABandC. You can modify the code in this
// listener, the listeners for the other sliders, and
// the listeners for the buttons to customize the

// behavior of the program to meet your needs.
sliderA.addChangelListener (




new Changelistener () {
public void stateChanged (ChangeEvent e) {
//Draw a new copy of the picture on the display.
graphics = display.getGraphics() ;
graphics.drawImage (picture.getImage(),0,0,null) ;
handleAllSliders () ;
}//end stateChanged
}//end new Changelistener
) ;//end addChangelistener

//Register a ChangelListener object on sliderB.
//Each time sliderB fires a ChangeEvent, this event
// handler creates a new display as a copy of the
// original picture and calls a method named
// handleSliderABandC.
sliderB.addChangelListener (
new ChangelListener () {
public void stateChanged (ChangeEvent e) {
//Draw a new copy of the picture on the display.
graphics = display.getGraphics() ;
graphics.drawImage (picture.getImage(),0,0,null) ;
handleAllSliders() ;
}//end stateChanged
}//end new Changelistener
) ;//end addChangeListener

//Register a ChangelListener object on sliderC.
//Each time sliderC fires a ChangeEvent, this event
// handler creates a new display as a copy of the
// original picture and calls a method named
// handleSliderABandC.
sliderC.addChangeListener (
new ChangelListener () {
public void stateChanged (ChangeEvent e) {
//Draw a new copy of the picture on the display.
graphics = display.getGraphics() ;
graphics.drawImage (picture.getImage(),0,0,null) ;
handleAllSliders () ;
}//end stateChanged
}//end new ChangeListener
) ;//end addChangeListener

//Register a ChangelListener object on sliderD.

//Each time sliderD fires a ChangeEvent, this event

// handler creates a new display as a copy of the

// original picture and calls a method named

// handleSliderD. Note that this is a different

// method than the method called by the three

// previous listener objects.

sliderD.addChangelListener (

new ChangelListener () {
public void stateChanged (ChangeEvent e) {

//Draw a new copy of the picture on the display.
graphics = display.getGraphics () ;
graphics.drawImage (picture.getImage(),0,0,null) ;




handleAllSliders () ;
}//end stateChanged
}//end new Changelistener
) ;//end addChangelistener

//This slider not used.
//Register a ChangelListener object on sliderE.
//Each time sliderE fires a ChangeEvent, this event
// handler causes the computer to beep solely to
// demonstrate that the slider is alive. Note that the
// beep occurs at the end of the slider travel.
sliderE.addChangeListener (
new ChangeListener () {
public void stateChanged (ChangeEvent e) {
//Draw a new copy of the picture on the display.
graphics = display.getGraphics () ;
graphics.drawImage (picture.getImage(),0,0,null);
handleAllSliders() ;
}//end stateChanged
}//end new ChangeListener
);//end addChangeListener

[ mm i m e — e ————————— //
}//end constructor
e e //
/*k

This method makes it possible for the user to perform
HSB color editing, adjust the color temperature, and
adjust the green tint on a digital photo. The method is
called each time any one of the the five sliders fires
a ChangeEvent. Events are fired when the user moves the
sliders.

Immediately before this method is called, a new
display is created, which is a copy of the original
picture. This method operates only on the display. It
does not modify the original picture.

FEach time this method is called, it gets the value of
each slider and uses that value to modify the
corresponding hue, saturation, and brightness property
for every pixel in the image currently residing in the
display. Then it uses the RGB color model to adjust the
color temperature and the green tint.

Basically, for each pixel, the method does the
following:

1. Gets the red, green, and blue values from the native
RGB color model data for the pixel.

2. Converts the RGB values into HSB values.

3. Modifies the HSB values independently of one another
using the current slider values.

4. Converts the modified HSB values back to RGB values.
5. Uses the RGB values to adjust the color temperature.




6. Uses the RGB values to adjust the green tint.
7. Uses the RGB values to set the modified color into
the pixel.

The method is synchronized to eliminate the possiblilty
that it may be called on two threads concurrently.
Y/
private synchronized void handleAllSliders () {
pixels = display.getPixels();
float[] hsbvals = new float[3];//HSB pixel values.
int sliderValue = 0;

//Process every pixel in the image using the same
// algorithm.
for(int cnt = 0;cnt < pixels.length;cnt++) {
//Get the red, green, and blue values for the
// current pixel.
red = pixels[cnt].getRed() ;
green = pixels|[cnt].getGreen() ;
blue = pixels|[cnt].getBlue() ;

//Get the three HSB color model values that

// correspond to the current pixel color expressed
// in the RGB color model. When the method returns,
// the three HSB values have been placed in the

// three-element array referred to by hsbvals in the
// order hue, saturation, and brightness.
Color.RGBtoHSB (red, green,blue, hsbvals) ;

//Modify the hue value for the pixel based on the

// current value of the Hue slider. Note that this

// statement performs addition instead of

// multiplication.

hsbvals[0] = (float) (hsbvals[0] +
sliderA.getValue () /360.0);//hue

//Modify the saturation value for the pixel based

// on the current value of the Sat slider. Note

// that multiplication is used here.

hsbvals[1l] = (float) (hsbvals[1l] *
sliderB.getValue () /100.0);//saturation

//1f the computed value is greter than 1.0, clip it

// at 1.0.

if (hsbvals[1l] > 1.0) hsbvals[1l] = (float)1.0;

//Modify the brightness value for the pixel based
// on the current value of the Bright slider. Once
// again, multiplication is used here.

hsbvals[2] = (float) (hsbvals[2] *
sliderC.getValue () /100.0);//brightness
if (hsbvals[2] > 1.0) hsbvals[2] = (float)l1l.0;

//Convert the HSB color values back into RGB color

// values.

int color = Color.HSBtoRGB (
hsbvals[0],hsbvals[1],hsbvals[2]);




//Adjust the color temperature using the RGB model.
// Increase the red and decrease the blue when the
// slider moves to the left of zero. Increase the
// blue and decrease the red when it moves to the
// right of zero.

//Get a Color object based on the int color value
// that was computed above.

Color newColor = new Color(color);

red = newColor.getRed() ;

blue = newColor.getBlue();

green = newColor.getGreen() ;

//Set the slider limit to 100 and divide the slider
// value by 500 so that the total change is only
// 20 percent when the pointer is at the end of the
// slider. Each of the 100 slider steps represents
// a 0.2-percent change in color temperature.
//Don't change the colors when the slider value
// is 0.
sliderValue = sliderD.getValue() ;
if (sliderValue < 0) {
sliderValue = -sliderValue;//Change sign
//Increase the value of red.
red = red + (int) (red * sliderValue/500.0);
//Decrease the value of blue by the same percent.
blue = blue - (int) (blue * sliderValue/500.0);
if (red > 255)red = 255;//Clip at 255.
lelse if(sliderValue > 0) {
//Decrease the value of red.
red = red - (int) (red * sliderValue/500.0) ;
//Increase the value of blue by the same percent.
blue = blue + (int) (blue * sliderValue/500.0);
if (blue > 255)blue = 255;//Clip at 255.
}//end else

//Adjust the green tint Don't change the colors

// when the slider value is O.

sliderValue = sliderE.getValue()

if (sliderValue < 0) {
sliderValue = -sliderValue;//Change sign
//Decrease green and increase both red and blue
// by half the percentage
green = green - (int) (green * sliderValue/500.0) ;
red = red + (int) (red * sliderValue/1000.0);
blue = blue + (int) (blue * sliderValue/1000.0);
if(red > 255)red = 255;//Clip at 255.
if (blue > 255)blue = 255;//Clip at 255.

lelse if(sliderValue > 0) {
//Increase green and decrease both red and blue
// by half the percentage.
green = green + (int) (green * sliderValue/500.0);
red = red - (int) (red * sliderValue/1000.0);
blue = blue - (int) (blue * sliderValue/1000.0) ;




if (green > 255)green = 255;//Clip at 255.
}//end else

//Use the RGB color values to set the color of
// the pixel.
newColor = new Color (red,green,blue);
pixels|[cnt] .setColor (newColor) ;

}//end for loop

//Repaint the display.
display.repaint () ;

}//end handleSliderABandC

}//end class TemperatureTintOl

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (Tl is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-


mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

