
The show Method and the PictureFrame Class 

Learn how the show() method of the Picture class causes the image contained in a 
Picture object to be displayed on the screen in a JFrame object.  Also learn about the 
PictureFrame class, which serves as an intermediary between the Picture object and 
the JFrame object. 

Published:  March 18, 2009 
By Richard G. Baldwin  

Java Programming Notes # 356 

 Preface 
o General 
o What you have learned so far 
o SimplePicture is a large and complex class 
o What you will learn in this lesson 
o Viewing tip 

 Figures 
 Listings 

o Supplementary material 
 General background information 

o A multimedia class library 
o Software installation and testing 

 Preview 
 Discussion and sample code 

o The sample program named Java356a 
o The show method of the SimplePicture class 
o The PictureFrame class 

 Instance variables of the PictureFrame class 
 Case with no existing PictureFrame object 
 Case with an existing PictureFrame object 
 More methods of the PictureFrame class 

 Run the programs 
 Summary 
 What's next? 
 Resources 
 Complete program listings 
 Copyright 
 About the author 

 

Preface 

mailto:Baldwin@DickBaldwin.com


General 

This lesson is the next in a series (see Resources) designed to teach you how to write 
Java programs to do things like: 

 Remove redeye from a photographic image. 
 Distort the human voice (as in secret witness interviews on TV). 
 Display one image inside another image. 
 Do edge detection, blurring, and other filtering operations on images. 
 Insert animated cartoon characters into videos of live humans. 

If you have ever wondered how to do these things, you've come to the right place. 

What you have learned so far 

If you have studied all of the earlier lessons in this series (see Resources), you have 
learned about the Turtle class, its superclass named SimpleTurtle, and the classes 
from which a turtle's contained objects are instantiated (Pen and PathSegment).  You 
have learned how to instantiate new Turtle objects, placing them in either a World 
object or a Picture object.  You have learned how to manipulate the Turtle objects once 
you place them in their environment.  You have also learned about the World class and 
objects of that class. 

Methods of the DigitalPicture interface 

In the previous lesson titled The DigitalPicture Interface:  Multimedia Programming with 
Java (see Resources), you learned about the thirteen methods of the Picture class and 
its superclass named SimplePicture that are declared in the DigitalPicture 
interface.  You also learned about other methods of the SimplePicture class that are 
called by those thirteen methods. 

SimplePicture is a large and complex class 

The SimplePicture class is a large and complex class that defines almost forty 
methods and several constructors.  You have some distance to go before you will 
understand all of the methods and constructors that are defined in the SimplePicture 
class. 

Dispose of the easy methods and constructors 

Before getting into the main thrust of this lesson, I am going to dispose of some of the 
constructors and methods of the SimplePicture class that should be easy for you to 
understand without an explanation from me. 

The following is a list of constructors and methods which do not contain complicated 
code, and which you should have no difficulty understanding if you understood the 



explanations of constructors and methods in the previous lesson (see 
Resources).  Because of their simplicity, I won't bore you by providing a detailed 
explanation.  You can view the source code for all of these constructors and methods in 
Listing 13 near the end of the lesson. 

 SimplePicture() - A constructor that takes no parameters and constructs a 
SimplePicture object with dimensions of 200x100 pixels. 

 SimplePicture(int width,int height,Color theColor) - Constructs a 
SimplePicture object with the specified dimensions and color. 

 String getExtension() - Returns the file-name extension of the file from which 
the SimplePicture object's image was extracted. 

 Graphics getGraphics() - Returns the graphics context for the BufferedImage 
object (as type Graphics) owned by this SimplePicture object. 

 Graphics2D createGraphics() - Returns a reference to a Graphics2D object 
that can be used to call methods of the Graphics2D class on the BufferedImage 
object that belongs to the SimplePicture object.  

 void setFileName(String name) - Stores a reference to a String object in the 
SimplePicture object's fileName variable. 

 PictureFrame getPictureFrame() - Returns a reference to the PictureFrame 
object belonging to the SimplePicture object. 

 void setPictureFrame(PictureFrame pictureFrame) - Stores a PictureFrame 
object's reference in the SimplePicture variable named pictureFrame. 

 void hide() - Sets the visible property belonging to the PictureFrame object to 
false causing the picture to disappear from the screen. 

 void setVisible(boolean flag) - Causes the SimplePicture object to be visible 
or invisible depending on the value of the parameter. 

 void repaint() - Forces the SimplePicture object to repaint itself on the screen. 
 boolean loadImage(String fileName) - Simply calls the load method explained 

in the previous lesson. 
 static void setMediaPath(String directory) - Sets the name and path of the 

directory from which media files will be read. 
 static String getMediaPath(String fileName) - Returns the name and path of 

the directory from which media files are currently being read. 
 String toString() - Overridden toString method that returns information about 

the SimplePicture object.  Note that this method is overridden again in the 
Picture class. 

Methods that I probably will explain later 

Click here for a list of constructors and methods of the SimplePicture class that are 
sufficiently interesting or complicated that I will probably explain them in detail in future 
lessons. 

What you will learn in this lesson 



Two of the most frequently used methods of the SimplePicture class are the methods 
named show and explore.  These two methods are used to display Picture objects in 
the formats shown in Figure 1 and Figure 2 respectively. 

Figure 1. Output format from the show method.  

 

Figure 2. Output format from the explore method.  

 

In this lesson, you will learn about the show method of the Picture class, along with a 
related class named PictureFrame, (which you must understand before you can fully 
understand the show method). 

A sample program 



I will also present and explain a sample program that illustrates one way to take a 
photograph of a physical object and then superimpose it on another photograph.  I 
confess that this doesn't have a much to do with the show method.  However, I didn't 
want to pass up the opportunity to provide another interesting example of image 
manipulation using Ericson's multimedia library. 

The explore method 

You will learn about the explore method, along with a related class named 
PictureExplorer, (which you must understand before you can understand the explore 
method), in a future lesson. 

Source code listings 

A complete listing of Ericson's Picture class is provided in Listing 12 near the end of the 
lesson, and a listing of Ericson's SimplePicture class is provided in Listing 13.  A listing 
of Ericson's DigitalPicture interface is provided in Listing 14, and a listing of Ericson's 
PictureFrame class is provided in Listing 15.  A listing of the sample program named 
Java356a is provided in Listing 16. 

Viewing tip 

I recommend that you open another copy of this document in a separate browser 
window and use the following links to easily find and view the figures and listings while 
you are reading about them. 

Figures 

 Figure 1. Output format from the show method.  
 Figure 2. Output format from the explore method.  
 Figure 3. Picture of the chair covered by a towel.  
 Figure 4. Picture of the tiger on the chair.  
 Figure 5. The beach scene.  
 Figure 6. The tiger superimposed on the beach scene.  
 Figure 7. Partial description of a JLabel from Sun.  

Listings 

 Listing 1. Background color for the SimplePicture class.  
 Listing 2. Background color for the PictureFrame class.  
 Listing 3. Background color for Baldwin's code.   
 Listing 4. Beginning of the program named Java356a.  
 Listing 5. Beginning of the Runner class and the run method.  
 Listing 6. The remainder of the program code for the program named Java356a.  
 Listing 7. The show method of the SimplePicture class.  
 Listing 8. One of two overloaded constructors for the PictureFrame class. 



 Listing 9. The initFrame method of the PictureFrame class.  
 Listing 10. The updateImage method of the PictureFrame class.  
 Listing 11. The updateImageAndShowIt method of the PictureFrame class.  
 Listing 12 . Source code for Ericson's Picture class. 
 Listing 13. Source code for Ericson's SimplePicture class. 
 Listing 14. Source code for Ericson's DigitalPicture interface.  
 Listing 15. Source code for Ericson's PictureFrame class 
 Listing 16. Source code for the program named Java356a.  

Supplementary material 

I recommend that you also study the other lessons in my extensive collection of online 
programming tutorials.  You will find a consolidated index at www.DickBaldwin.com. 

General background information 

A multimedia class library 

In this series of lessons, I will present and explain many of the classes and methods in a 
multimedia class library that was developed and released under a Creative Commons 
Attribution 3.0 United States License (see Resources) by Mark Guzdial and Barbara 
Ericson at Georgia Institute of Technology.  In doing this, I will also present some 
interesting sample programs that use the library. 

Software installation and testing 

I explained how to download, install, and test the multimedia class library in an earlier 
lesson titled Multimedia Programming with Java, Getting Started (see Resources). 

Preview 

As I mentioned earlier, I will explain the show method of the Picture class in this 
lesson.  In addition, I will explain the methods of a related class named PictureFrame, 
which you must understand before you can fully understand the show method. 

A sample program 

As mentioned earlier, I will also present and explain a sample program that illustrates 
one way to take a photograph of a physical object and then superimpose it on another 
photograph. 

Reducing the confusion 

Because I will be switching back and forth among code fragments extracted from 
Ericson's SimplePicture class, code fragments extracted from Ericson's PictureFrame 

http://www.dickbaldwin.com/toc.htm


class, and code fragments extracted from my sample program, things can get 
confusing. 

In an effort to reduce the confusion, I will present code fragments from Ericson's 
SimplePicture class against the background color shown in Listing 1. 

Listing 1. Background color for the SimplePicture class.  

I will present code fragments from the 

SimplePicture class 

against this background color. 

Similarly, I will present code fragments from Ericson's PictureFrame class against the 
background color shown in Listing 2. 

Listing 2. Background color for the PictureFrame class.  

I will present code fragments from the 

PictureFrame class 

against this background color. 

Finally, I will present code fragments from my sample program against the background 
color shown in Listing 3. 

Listing 3. Background color for Baldwin's code.  

I will present code fragments from my sample 

programs 

with this background color. 

  

Discussion and sample code 

The sample program named Java356a 

The purpose of this program is to illustrate one way to take a digital photograph of a 
physical object and then superimpose it on another digital photograph. 

The physical setup 

A desk chair was placed in front of a bookcase and a blue bed sheet was hung on the 
bookcase to provide a relatively solid color background.  A green towel was placed on 
the chair to hide the texture in the upholstery.  The lighting consisted of ambient room 
light, a fluorescent desk lamp tilted upward to shine directly on the chair and the tiger, 
and the light emitted by the dual screens on my computer.  



A digital photograph of the chair was taken, using the camera that is built into my laptop 
computer, producing the image shown in Figure 3. 

Figure 3. Picture of the chair covered by a towel.  

 

Now add the tiger 

Then a stuffed tiger was placed on the back of the chair (being careful to avoid moving 
the chair) and another digital photograph was taken, producing the image shown in 
Figure 4.  (I just now realized that it might have worked better to also cover the chair 
with the sheet instead of covering it with a towel of a different color.) 

Figure 4. Picture of the tiger on the chair.  

 

Note the shadow of the tiger on the blue background just to the right of the tiger's 
head.  This will become important later. 

Instantiate four Picture objects 



Picture objects were instantiated from each of the digital photographs described 
above.  Another Picture object was instantiated from an image file (taken from Ericson's 
media library) showing a beach scene.  This image has the same dimensions as each 
of the two digital photographs.  The beach scene is shown in Figure 5. 

Figure 5. The beach scene.  

 

An all-white Picture object 

The overall objective was to process the images in such a way as to superimpose the 
tiger on the beach scene.   

A fourth Picture object was instantiated with the same dimensions and an all-white 
image to accommodate this objective.  This Picture object was used to produce the 
final image shown in Figure 4. 

Process the images 

Methods of the SimplePicture class and the Pixel class 
were used in a pair of nested for loops to compute the 
color distance between corresponding pixels in the two 
photographs and to compare that distance to a specified 
distance threshold. 

When the color distance between two corresponding 
pixels, (one from each photograph), exceeded a specified threshold, the color of the 
pixel from the Picture object containing the tiger was copied to the all-white Picture 
object, replacing a white pixel. 

Otherwise, the color of the pixel from the Picture object containing the beach scene 
was copied to the all-white Picture object.  This had the effect of replacing the bed 
sheet and towel background behind the tiger with the image from the beach scene as a 
new background . 

 

Color distance 

I explained the concept of 
color distance in the earlier 
lesson titled 3D Displays, 
Color Distance, and Edge 
Detection:  Multimedia 
Programming with Java 
(see Resources).  

 



The final product 

The final product is shown in Figure 6.  As you can see, the results were reasonably 
good. 

Figure 6. The tiger superimposed on the beach scene.  

 

Factors that affect  the quality 

The quality of the final product depends heavily on the 
value of the threshold mentioned above.   

Lighting is also very critical.  I make no claims of being a 
photographer and I didn't do anything special to control 
the lighting.  As a result, the shadow of the tiger that 
was barely noticeable on the dark blue bed sheet in 
Figure 4 is very noticeable against the light blue 
background in the final product shown in Figure 6. 

Enough talk, let's see some code 

A complete listing of this program is provided in Listing 16 near the end of the 
lesson.  As is my custom, I will present and explain this program in fragments.  The 
program begins in Listing 4.  (Remember, the background color in Listing 4 indicates 
that the code fragment was extracted from my sample program.) 

Listing 4. Beginning of the program named Java356a.  

import java.awt.Color; 

       

public class Main{ 

  public static void main(String[] args){ 

    new Runner().run(); 

  }//end main method 

 

Attribution 

The idea and some of the 
methodology for this 
program came directly from 
the book titled Introduction 
to Computing and 
Programming with Java: A 
Multimedia Approach (see 
Resources) by Guzdial and 
Ericson.  

 



}//end class Main 

The main method in Listing 4 instantiates a new object of the Runner class and calls 
the run method on the object.  When the run method returns, the main method and the 
program terminate. 

Beginning of the Runner class and the run method 

The runner class and its run method begin in Listing 5. 

Listing 5. Beginning of the Runner class and the run method.  

class Runner{ 

  void run(){ 

    //Construct three new 341x256 Picture 

objects by 

    // providing the names of image files as 

parameters 

    // to the Picture constructor. 

    Picture pic1 = new 

Picture("ScaledBeach.jpg"); 

    Picture pic2 = new 

Picture("WithTiger.jpg"); 

    Picture pic3 = new 

Picture("WithoutTiger.jpg"); 

     

    //Construct an all-white 341x256 Picture 

object. 

    Picture pic4 = new Picture(341,256); 

     

    //Display all three Picture objects in the 

show 

    // format. 

    pic1.show(); 

    pic2.show(); 

    pic3.show(); 

None of the code in Listing 5 should be new to you by now.  The last three statements 
in Listing 5 call the show method of the Picture class to provide screen displays in the 
format shown in Figure 3.  (I will have a great deal more to say about the show method 
later in this lesson.) 

The remainder of the program code 

The remainder of the program code is shown in Listing 6. 

Listing 6. The remainder of the program code for the program named Java356a.  

    //Replace pixel colors in the all-white 

Picture object 



    // with the colors from either the beach 

image or the  

    // tiger image. 

    Pixel pixA; 

    Pixel pixB; 

    Pixel pixC; 

    Pixel pixD; 

    for(int row = 0;row < pic1.getHeight() - 

1;row++){ 

      for(int col = 0;col < pic1.getWidth() - 

1;col++){ 

        pixA = pic1.getPixel(col,row); 

        pixB = pic2.getPixel(col,row); 

        pixC = pic3.getPixel(col,row); 

        pixD = pic4.getPixel(col,row); 

 

        if(pixB.colorDistance(pixC.getColor()) 

> 50){ 

          //Replace white pixel with the pixel 

color from  

          // the tiger image. 

          pixD.setColor(pixB.getColor()); 

        }else{ 

          //Replace the white pixel with pixel 

color from  

          // the beach image. 

          pixD.setColor(pixA.getColor()); 

        }//end else 

      }//end inner for loop 

    }//end outer for loop 

 

    //Display the final product using the show 

format. 

    pic4.setTitle("Tiger on beach scene"); 

    pic4.show(); 

  }//end run 

}//end class Runner 

None of this code is new 

Once again, none of the code in Listing 6 should be new to you by now.  The code in 
Listing 6 compares corresponding pixels from the two digital pictures and modifies the 
colors of the pixels in the all-white pic4 as described earlier. 

Then Listing 6 sets the title for pic4 to that shown in Figure 6 and calls the show 
method on pic4 producing the screen output shown in Figure 6.  (You may not want to 
go swimming on that beach with a tiger on the loose.) 

The show method of the SimplePicture class 



The show method is shown in its entirety in Listing 7.  (Remember, the background 
color in Listing 7 indicates that the code fragment was extracted from Ericson's 
SimplePicture class.) 

Listing 7. The show method of the SimplePicture class.  

 /** 

  * Method to show the picture in a picture 

frame 

  */ 

 public void show(){ 

    // if there is a current picture frame 

then use it 

   if (pictureFrame != null) 

     pictureFrame.updateImageAndShowIt(); 

 

   // else create a new picture frame with 

this picture 

   else 

     pictureFrame = new PictureFrame(this); 

 }//end show method 

Instantiating objects of the PictureFrame class 

There are only two locations in the SimplePicture class where a new object of the 
PictureFrame class is instantiated.  One of those locations is in the show method 
shown in Listing 7.  The other location is in the repaint method.  Therefore, there is a 
strong possibility that the contents of the variable named pictureFrame will be null 
(indicating there is no existing PictureFrame object) the first time that the show method 
is called. 

Listing 7 begins by checking to see if the instance variable named pictureFrame 
contains null.  If so a new PictureFrame object that encapsulates a reference to the 
current SimplePicture object is instantiated and its reference is assigned to the 
instance variable named pictureFrame. 

The PictureFrame class 

That brings us to the need to understand the class named PictureFrame.  I will begin 
by walking you through the code that is executed for the case where the show method 
is called and there is no existing PictureFrame object assigned to the variable named 
pictureFrame.  Then I will come back and walk you through the code that is executed if 
the PictureFrame object already exists when the show method is called. 

Instance variables of the PictureFrame class 



Before getting into that, however, I will list and briefly describe the instance variables 
belonging to objects of the PictureFrame class.  I will be referring back to these 
instance variables later. 

 JFrame frame = new JFrame() - Main window used to display the image from the 
Picture object. 

 ImageIcon imageIcon = new ImageIcon() - ImageIcon object used to display the 
picture in a label. 

 JLabel label = new JLabel(imageIcon) - Label used to display the picture. 
 DigitalPicture picture - The Picture object to display. 

A new JFrame object 

Note that when a new PictureFrame object is constructed, a new JFrame object is also 
constructed and its reference is stored in the instance variable named frame.  This 
JFrame object provides the visual container in which the Picture object's image is 
displayed. 

A complete listing of the PictureFrame class is provided in Listing 15 near the end of 
the lesson. 

Case with no existing PictureFrame object 

When the show method in Listing 7 is called and the pictureFrame variable contains 
null, the PictureFrame constructor shown in Listing 8 is called to construct a new 
PictureFrame object.  (Remember, the background color in Listing 8 indicates that the 
code fragment was extracted from the PictureFrame class.) 

Listing 8. One of two overloaded constructors for the PictureFrame class. 

  /** 

   * A constructor that takes a picture to 

display 

   * @param picture  the digital picture to 

display in the 

   * picture frame 

   */ 

  public PictureFrame(DigitalPicture picture){ 

    // set the current object's picture to the 

passed in 

    // picture 

    this.picture = picture; 

 

    // set up the frame 

    initFrame(); 

  }//end constructor 



This constructor saves the incoming reference to the SimplePicture object in an 
instance variable named picture.  (Recall that the SimplePicture class implements the 
DigitalPicture interface.) 

Then the constructor calls the method named initFrame (see Listing 9) on the new 
PictureFrame object that is being constructed. 

The initFrame method of the PictureFrame class 

The initFrame method is shown in its entirety in Listing 9. 

Listing 9. The initFrame method of the PictureFrame class.  

  /** 

   * A method to initialize the picture frame 

   */ 

  private void initFrame(){ 

    // set the image for the picture frame 

    updateImage(); 

 

    // add the label to the frame 

    frame.getContentPane().add(label); 

 

    // pack the frame (set the size to as big 

as it needs 

    // to be) 

    frame.pack(); 

 

    // make the frame visible 

    frame.setVisible(true); 

  }//end initFrame method 

The initFrame method immediately calls the updateImage method shown in Listing 
10.  (I will put the explanation of the initFrame method on the back burner for now and 
return to it later.) 

The updateImage method of the PictureFrame class 

Code in the updateImage method is executed only if a reference to a Picture object is 
stored in the instance variable named picture. 

Listing 10. The updateImage method of the PictureFrame class.  

  /** 

   * A method to update the picture frame 

image with the 

   * image in the picture 

   */ 

  public void updateImage(){ 

    // only do this if there is a picture 



    if (picture != null){ 

      // set the image for the image icon from 

the picture 

      imageIcon.setImage(picture.getImage()); 

 

      // set the title of the frame to the 

title of the 

      // picture 

      frame.setTitle(picture.getTitle()); 

    }//end if 

  }//end updateImage method 

An ImageIcon object 

As you saw earlier in the list of instance variables, a new object of the ImageIcon class 
is instantiated when a new object of the PictureFrame class is constructed.  The 
object's reference is stored in the instance variable named imageIcon. 

Get the image from the Picture object 

Listing 10 calls the getImage method on the reference to the Picture object to get a 
reference to the BufferedImage object that belongs to the Picture object.  (The 
getImage method contains a single line of code that returns the value of an instance 
variable named bufferedImage so I won't show that code here.) 

Set the image in the ImageIcon object 

Then Listing 10 calls the setImage method on the ImageIcon object to "Set the image 
displayed by the icon," passing the reference to the Picture object's image as a 
parameter. 

At this point, an ImageIcon object has been instantiated that holds a reference to the 
BufferedImage object that belongs to the Picture object.  Whenever the ImageIcon 
object is displayed, the image belonging to the Picture object will also be displayed. 

Because the ImageIcon object and the Picture object refer to the same 
BufferedImage object, modifications to the pixels in the Picture object's image will be 
reflected on the screen the next time the ImageIcon object is displayed. 

Set the title on the JFrame object 

Then Listing 10 gets a reference to the Picture object's title, and calls the setTitle 
method on the JFrame object, causing the JFrame object and the Picture object to 
both refer to the same String object as a title. 

Modifications to the Picture object's image or title 



If the BufferedImage or the String title belonging to the Picture object is modified and 
then the PictureFrame object's updateImage method is called, the image referred to 
by the ImageIcon object and the title referred to by the JFrame object will reflect the 
changes. 

That's a wrap on the updateImage method 

That concludes the explanation of the updateImage method shown in Listing 10.  Now 
we will return to the explanation of the initFrame method shown in Listing 9. 

A new JLabel object 

As you saw earlier in the list of instance variables, whenever a new PictureFrame 
object is constructed, a new object of the JLabel class is instantiated and its reference 
is stored in the instance variable named label.  Furthermore, a reference to the 
ImageIcon object is passed to the constructor when the JLabel object is instantiated. 

Partial description of a JLabel from Sun 

Figure 7 contains a partial description of the JLabel class from the Sun documentation. 

Figure 7. Partial description of a JLabel from Sun.  

A JLabel object can display either text, an image, or 

both... 

By default, labels are vertically centered in their display 

area. Text-only labels are leading edge aligned, by 

default; image-only labels are horizontally centered, by 

default.  

Instantiate a JLabel object with an ImageIcon object's reference 

If you instantiate a new JLabel object, passing only a reference to an ImageIcon object 
as a parameter to the constructor, this will create "a JLabel instance with the specified 
image. The label is centered vertically and horizontally in its display area."  

Where is this all going? 

By now, you should be starting to see where this is all going.  The objective is to display 
the image belonging to the Picture object in a JFrame object.  One way to do this is by 
encapsulating a reference to the image in a JLabel object and placing the JLabel 
object in the center of the JFrame object. 

Only two types of encapsulated references are allowed 



However, only two types of object references can be encapsulated in a JLabel object: 

 String objects 
 ImageIcon objects 

There is no constructor for a JLabel object that will accept a reference to a 
BufferedImage object as a parameter. 

Therefore, in order to cause a reference to the Picture object's BufferedImage to be 
encapsulated in the JLabel object, we must first encapsulate the BufferedImage 
object's reference in an ImageIcon object and then encapsulate that object in the 
JLabel object. 

Add the JLabel object to the content pane 

When the call to the updateImage method returns, the 
code in Listing 9 adds the JLabel object to the content 
pane of the JFrame object. 

Pack the JFrame object 

Then Listing 9 calls the pack method on the JFrame object to set the size of the 
JFrame object.   

What does the pack method do? 

To make a long story short, the call to the pack method 
causes the size of the display area of the JFrame object 
(see Figure 1) to match the size of the picture's 
BufferedImage object.  The overall size of the resulting 
JFrame object will be somewhat larger (depending on 
the pluggable look and feel in use) due to the border 
around the image and the banner at the top. 

Make the JFrame object visible   

Finally, the code in Listing 9 sets the visible property belonging to the JFrame object to 
true.  This causes the JFrame object, along with all of the components (including the 
JLabel object and the ImageIcon object) contained within the JFrame object to 
become visible on the computer screen. 

When the ImageIcon object becomes visible, it is really the Picture object's 
BufferedImage object, whose reference is held by the ImageIcon object, that becomes 
visible inside the JFrame object.  (See Figure 1.) 

Case with an existing PictureFrame object 

 

The content pane 

If you are unfamiliar with the 
content pane, see the 
lesson titled Swing from A 
to Z, Some Simple 
Components in Resources.  

 

 

Pluggable Look and Feel 

If you are unfamiliar with 
Swing's Pluggable Look and 
Feel, see the lesson titled 
The Swing Package, A 
Preview of Pluggable Look 
and Feel in Resources.  

 



Please return your attention to the if-else statement in the show method in Listing 7.  If 
a PictureFrame object already exists, the show method calls the 
updateImageAndShowIt method on the PictureFrame object. 

The updateImageAndShowIt method of the PictureFrame class 

This method is shown in its entirety in Listing 11. 

Listing 11. The updateImageAndShowIt method of the PictureFrame class.  

  /** 

   * A method to update the picture frame 

image with the 

   * image in the picture and show it 

   */ 

  public void updateImageAndShowIt(){ 

    // first update the image 

    updateImage(); 

 

    // now make sure it is shown 

    frame.setVisible(true); 

  }//end updateImageAndShowIt method 

Listing 11 begins by calling the updateImage method that I explained in conjunction 
with Listing 10.  As I explained at that time, if the BufferedImage pixels or the String 
title text belonging to the Picture object have been modified, the call to the 
updateImage method will cause those changes to be reflected in a subsequent screen 
display of the Picture object. 

Display the updated picture 

Then Listing 11 calls the setVisible method on the JFrame object, forcing the object to 
repaint itself (and all of its children) on the screen.  The new screen image will reflect 
any changes that may have been made to the pixels in the image or the text in the title. 

Return of the show method 

When the setVisible method returns, the updateImageAndShowIt method terminates, 
returning control to the show method in Listing 7. 

The show method has nothing else to do, so it terminates and returns control to the 
code from which it was originally called, such as the code in Listing 6 for example. 

The Picture object will have been displayed 

When the show method terminates, the Picture object on which it was called will have 
been displayed in a JFrame object as shown in Figure 6. 



If the show method is called on more than one Picture object, the resulting images will 
overlay one another in the upper-left corner of the screen. 

That concludes the explanation of the show method of the Picture class. 

More methods of the PictureFrame class 

The PictureFrame class provides several other methods that could prove to be useful 
in more complex programs.  The signatures and the behaviors of each of those 
methods are described below: 

 void setPicture(Picture picture) - sets the picture that will be displayed in the 
JFrame object (the frame). 

 void displayImage() - Makes sure that the frame is displayed. 
 void hide() - Hides the frame. 
 void setVisible(boolean flag) - Sets the visible flag on the frame. 
 void close() - Closes and disposes of the JFrame object (more permanent than 

simply hiding the frame). 
 void setTitle(String title) - Sets the title for the frame. 
 void repaint() - Forces the frame to repaint itself. 

The PictureFrame class also provides a constructor that takes no parameters. 

None of the code is complicated 

Neither the constructor nor any of the methods in the above list contain complicated 
code.  If you understood the earlier explanations of the initFrame and updateImage 
methods, you should have no difficulty understand the code in the additional constructor 
and methods.  You can view the code for the constructor and the methods in Listing 15 
near the end of the lesson. 

Therefore, that also concludes the explanation of the PictureFrame class. 

Run the programs 

I encourage you to copy the code from Listing 16, compile the code, and execute 
it.  Experiment with the code, making changes, and observing the results of your 
changes.  Make certain that you can explain why your changes behave as they do. 

Summary 

In this lesson, I explained the show method of the Picture class that causes the image 
contained in a Picture object to be displayed on the screen in a JFrame object as 
shown in Figure 1. 



Along the way, I also explained the PictureFrame class, which serves as an 
intermediary between the Picture object and the JFrame object. 

What's next? 

In the next lesson, you will learn how to use three different methods, which in turn use 
affine transforms, to scale, rotate, and translate Picture objects. 

I will explain and illustrate the following three methods and one overloaded constructor 
from the SimplePicture class: 

 Picture scale(double xFactor, double yFactor) 
 Rectangle2D getTransformEnclosingRect(AffineTransform trans 
 void copyPicture(SimplePicture sourcePicture) 
 SimplePicture(SimplePicture copyPicture) 

The first two methods in the above list involve the application of affine transforms to 
Picture objects. 

I will also develop and explain two additional methods that are patterned after the scale 
method.  These two methods apply rotation and translation transforms to Picture 
objects. 

Resources 

 Creative Commons Attribution 3.0 United States License 
 Media Computation book in Java - numerous downloads available 
 Introduction to Computing and Programming with Java: A Multimedia Approach 
 DrJava download site 
 DrJava, the JavaPLT group at Rice University 
 DrJava Open Source License 
 The Essence of OOP using Java, The this and super Keywords 
 Threads of Control 
 Painting in AWT and Swing 
 Wikipedia Turtle Graphics 
 IsA or HasA 
 Vector Cad-Cam XI Lathe Tutorial 
 Classification of 3D to 2D projections 
 Color model from Wikipedia 
 Light and color:  an introduction by Norman Koren 
 Color Principles - Hue, Saturation, and Value 
 200 Implementing the Model-View-Controller Paradigm using Observer and 

Observable 
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces 
 302 Java 2D Graphics, The Point2D Class 

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571
http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://en.wikipedia.org/wiki/Color_model
../Light%20and%20color:%20%20an%20introduction
http://www.ncsu.edu/scivis/lessons/colormodels/color_models2.html#(HSV)
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm


 304 Java 2D Graphics, The Graphics2D Class 
 306 Java 2D Graphics, Simple Affine Transforms 
 308 Java 2D Graphics, The Shape Interface, Part 1 
 310 Java 2D Graphics, The Shape Interface, Part 2 
 312 Java 2D Graphics, Solid Color Fill 
 314 Java 2D Graphics, Gradient Color Fill 
 316 Java 2D Graphics, Texture Fill 
 318 Java 2D Graphics, The Stroke Interface 
 320 Java 2D Graphics, The Composite Interface and Transparency 
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and 

Transparency 
 324 Java 2D Graphics, The Color Constructors and Transparency 
 400 Processing Image Pixels using Java, Getting Started 

402 Processing Image Pixels using Java, Creating a Spotlight 
404 Processing Image Pixels Using Java: Controlling Contrast and Brightness 
406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion  
408 Processing Image Pixels, Performing Convolution on Images 
410 Processing Image Pixels, Understanding Image Convolution in Java 
412 Processing Image Pixels, Applying Image Convolution in Java, Part 1  

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2 
416 Processing Image Pixels, An Improved Image-Processing Framework in 
Java 
418 Processing Image Pixels, Creating Visible Watermarks in Java 
450 A Framework for Experimenting with Java 2D Image-Processing Filters 
452 Using the Java 2D LookupOp Filter Class to Process Images 
454 Using the Java 2D AffineTransformOp Filter Class to Process Images 
456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble 
Images 
458 Using the Java 2D BandCombineOp Filter Class to Process Images 
460 Using the Java 2D ConvolveOp Filter Class to Process Images 
462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to 
Process Images 

 506 JavaBeans, Introspection 
 2100 Understanding Properties in Java and C# 
 2300 Generics in J2SE, Getting Started 
 340 Multimedia Programming with Java, Getting Started 
 342 Getting Started with the Turtle Class: Multimedia Programming with Java 
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java 
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java 
 348 The Pen and PathSegment Classes: Multimedia Programming with Java 
 349 A Pixel Editor Program in Java: Multimedia Programming with Java 
 350 3D Displays, Color Distance, and Edge Detection 
 351 A Slider-Controlled Softening Program for Digital Photos 
 352 Adding Animated Movement to Your Java Application 
 353 A Slider-Controlled Sharpening Program for Digital Photos 
 354 The DigitalPicture Interface 

http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856
http://www.developer.com/java/other/article.php/3696676
http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471
http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761
http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671
http://www.developer.com/java/other/article.php/3806156
http://www.dickbaldwin.com/java/Java353.htm
http://www.dickbaldwin.com/java/Java354.htm


 355 The HSB Color Model 

Complete program listings 

Complete listings of the programs discussed in this lesson are provided in Listing 12 
through Listing 16 below.  

Listing 12 . Source code for Ericson's Picture class.  

import java.awt.*; 

import java.awt.font.*; 

import java.awt.geom.*; 

import java.awt.image.BufferedImage; 

import java.text.*; 

 

/** 

 * A class that represents a picture.  This 

class inherits 

 * from SimplePicture and allows the student 

to add  

 * functionality to the Picture class. 

 * 

 * Copyright Georgia Institute of Technology 

2004-2005 

 * @author Barbara Ericson 

ericson@cc.gatech.edu 

 */ 

public class Picture extends SimplePicture 

{ 

  ///////////////////// constructors 

///////////////////// 

 

  /** 

   * Constructor that takes no arguments 

   */ 

  public Picture () 

  { 

    /* not needed but use it to show students 

the implicit 

     * call to super() 

     * child constructors always call a parent 

constructor 

     */ 

    super(); 

  } 

 

  /** 

   * Constructor that takes a file name and 

creates the  

   * picture 

   * @param fileName the name of the file to 

create the  

   * picture from 

http://www.dickbaldwin.com/java/Java355.htm


   */ 

  public Picture(String fileName) 

  { 

    // let the parent class handle this 

fileName 

    super(fileName); 

  } 

 

  /** 

   * Constructor that takes the width and 

height 

   * @param width the width of the desired 

picture 

   * @param height the height of the desired 

picture 

   */ 

  public Picture(int width, int height) 

  { 

    // let the parent class handle this width 

and height 

    super(width,height); 

  } 

 

  /** 

   * Constructor that takes a picture and 

creates a 

   * copy of that picture 

   */ 

  public Picture(Picture copyPicture) 

  { 

    // let the parent class do the copy 

    super(copyPicture); 

  } 

 

  /** 

   * Constructor that takes a buffered image 

   * @param image the buffered image to use 

   */ 

  public Picture(BufferedImage image) 

  { 

    super(image); 

  } 

 

  ////////////////////// methods 

///////////////////////// 

 

  /** 

   * Method to return a string with 

information about this 

   * picture. 

   * @return a string with information about 

the picture  

   * such as fileName, height and width. 

   */ 

  public String toString() 

  { 



    String output =  

      "Picture, filename " + getFileName() + 

      " height " + getHeight() 

      + " width " + getWidth(); 

    return output; 

 

  } 

 

} // this } is the end of class Picture, put 

all new  

  // methods before this 

  

Listing 13. Source code for Ericson's SimplePicture class. 

import javax.imageio.ImageIO; 

import java.awt.image.BufferedImage; 

import javax.swing.ImageIcon; 

import java.awt.*; 

import java.io.*; 

import java.awt.geom.*; 

 

/** 

 * A class that represents a simple picture.  A 

simple 

 * picture may have an associated file name and a 

title. 

 * A simple picture has pixels, width, and height.  

A 

 * simple picture uses a BufferedImage to hold the 

pixels. 

 * You can show a simple picture in a PictureFrame 

(a 

 * JFrame). 

 * 

 * Copyright Georgia Institute of Technology 2004 

 * @author Barb Ericson ericson@cc.gatech.edu 

 */ 

public class SimplePicture implements 

DigitalPicture 

{ 

 

  /////////////////////// Fields 

///////////////////////// 

 

  /** 

   * the file name associated with the simple 

picture 

   */ 

  private String fileName; 

 

  /** 

   * the title of the simple picture 



   */ 

  private String title; 

 

  /** 

   * buffered image to hold pixels for the simple 

picture 

   */ 

  private BufferedImage bufferedImage; 

 

  /** 

   * frame used to display the simple picture 

   */ 

  private PictureFrame pictureFrame; 

 

  /** 

   * extension for this file (jpg or bmp) 

   */ 

  private String extension; 

 

 

 /////////////////////// Constructors 

//////////////////// 

 

 /** 

  * A Constructor that takes no arguments.  All 

fields 

  * will be null. A no-argument constructor must 

be given 

  * in order for a class to be able to be 

subclassed.  By 

  * default all subclasses will implicitly call 

this in 

  * their parent's no argument constructor unless 

a 

  * different call to super() is explicitly made 

as the 

  * first line of code in a constructor. 

  */ 

 public SimplePicture() 

 {this(200,100);} 

 

 /** 

  * A Constructor that takes a file name and uses 

the 

  * file to create a picture 

  * @param fileName the file name to use in 

creating the 

  * picture 

  */ 

 public SimplePicture(String fileName) 

 { 

 

   // load the picture into the buffered image 

   load(fileName); 

 

 } 



 

 /** 

  * A constructor that takes the width and height 

desired 

  * for a picture and creates a buffered image of 

that 

  * size.  This constructor doesn't  show the 

picture. 

  * @param width the desired width 

  * @param height the desired height 

  */ 

 public  SimplePicture(int width, int height) 

 { 

   bufferedImage = new BufferedImage( 

               width, height, 

BufferedImage.TYPE_INT_RGB); 

   title = "None"; 

   fileName = "None"; 

   extension = "jpg"; 

   setAllPixelsToAColor(Color.white); 

 } 

 

 /** 

  * A constructor that takes the width and height 

desired 

  * for a picture and creates a buffered image of 

that 

  * size.  It also takes the color to use for the 

  * background of the picture. 

  * @param width the desired width 

  * @param height the desired height 

  * @param theColor the background color for the 

picture 

  */ 

 public  SimplePicture( 

                    int width, int height, Color 

theColor) 

 { 

   this(width,height); 

   setAllPixelsToAColor(theColor); 

 } 

 

 /** 

  * A Constructor that takes a picture to copy 

  * information from 

  * @param copyPicture the picture to copy from 

  */ 

 public SimplePicture(SimplePicture copyPicture) 

 { 

   if (copyPicture.fileName != null) 

   { 

      this.fileName = new 

String(copyPicture.fileName); 

      this.extension = copyPicture.extension; 

   } 

   if (copyPicture.title != null) 



      this.title = new String(copyPicture.title); 

   if (copyPicture.bufferedImage != null) 

   { 

     this.bufferedImage = 

                 new 

BufferedImage(copyPicture.getWidth(), 

                                  

copyPicture.getHeight(), 

                              

BufferedImage.TYPE_INT_RGB); 

     this.copyPicture(copyPicture); 

   } 

 } 

 

 /** 

  * A constructor that takes a buffered image 

  * @param image the buffered image 

  */ 

 public SimplePicture(BufferedImage image) 

 { 

   this.bufferedImage = image; 

   title = "None"; 

   fileName = "None"; 

   extension = "jpg"; 

 } 

 

 ////////////////////////// Methods 

////////////////////// 

 

 /** 

  * Method to get the extension for this picture 

  * @return the extendsion (jpg or bmp) 

  */ 

 public String getExtension() { return extension; 

} 

 

 

 /** 

  * Method that will copy all of the passed source 

  * picture into the current picture object 

  * @param sourcePicture  the picture object to 

copy 

  */ 

 public void copyPicture(SimplePicture 

sourcePicture) 

 { 

   Pixel sourcePixel = null; 

   Pixel targetPixel = null; 

 

   // loop through the columns 

   for (int sourceX = 0, targetX = 0; 

        sourceX < sourcePicture.getWidth() && 

        targetX < this.getWidth(); 

        sourceX++, targetX++) 

   { 

     // loop through the rows 



     for (int sourceY = 0, targetY = 0; 

          sourceY < sourcePicture.getHeight() && 

          targetY < this.getHeight(); 

          sourceY++, targetY++) 

     { 

       sourcePixel = 

                  

sourcePicture.getPixel(sourceX,sourceY); 

       targetPixel = 

this.getPixel(targetX,targetY); 

       

targetPixel.setColor(sourcePixel.getColor()); 

     } 

   } 

 

 } 

 

 /** 

  * Method to set the color in the picture to the 

passed 

  * color 

  * @param color the color to set to 

  */ 

 public void setAllPixelsToAColor(Color color) 

 { 

   // loop through all x 

   for (int x = 0; x < this.getWidth(); x++) 

   { 

     // loop through all y 

     for (int y = 0; y < this.getHeight(); y++) 

     { 

       getPixel(x,y).setColor(color); 

     } 

   } 

 } 

 

 /** 

  * Method to get the buffered image 

  * @return the buffered image 

  */ 

 public BufferedImage getBufferedImage() 

 { 

    return bufferedImage; 

 } 

 

 /** 

  * Method to get a graphics object for this 

picture to 

  * use to draw on 

  * @return a graphics object to use for drawing 

  */ 

 public Graphics getGraphics() 

 { 

   return bufferedImage.getGraphics(); 

 } 

 



 /** 

  * Method to get a Graphics2D object for this 

picture 

  * which can be used to do 2D drawing on the 

picture 

  */ 

 public Graphics2D createGraphics() 

 { 

   return bufferedImage.createGraphics(); 

 } 

 

 /** 

  * Method to get the file name associated with 

the 

  * picture 

  * @return  the file name associated with the 

picture 

  */ 

 public String getFileName() { return fileName; } 

 

 /** 

  * Method to set the file name 

  * @param name the full pathname of the file 

  */ 

 public void setFileName(String name) 

 { 

   fileName = name; 

 } 

 

 /** 

  * Method to get the title of the picture 

  * @return the title of the picture 

  */ 

 public String getTitle() 

 { return title; } 

 

 /** 

  * Method to set the title for the picture 

  * @param title the title to use for the picture 

  */ 

 public void setTitle(String title) 

 { 

   this.title = title; 

   if (pictureFrame != null) 

       pictureFrame.setTitle(title); 

 } 

 

 /** 

  * Method to get the width of the picture in 

pixels 

  * @return the width of the picture in pixels 

  */ 

 public int getWidth(){ return 

bufferedImage.getWidth(); } 

 

 /** 



  * Method to get the height of the picture in 

pixels 

  * @return  the height of the picture in pixels 

  */ 

 public int getHeight(){ 

  return bufferedImage.getHeight(); 

 } 

 

 /** 

  * Method to get the picture frame for the 

picture 

  * @return the picture frame associated with this 

  * picture (it may be null) 

  */ 

 public PictureFrame getPictureFrame() 

                                  { return 

pictureFrame; } 

 

 /** 

  * Method to set the picture frame for this 

picture 

  * @param pictureFrame the picture frame to use 

  */ 

 public void setPictureFrame(PictureFrame 

pictureFrame) 

 { 

   // set this picture objects' picture frame to 

the 

   // passed one 

   this.pictureFrame = pictureFrame; 

 } 

 

 /** 

  * Method to get an image from the picture 

  * @return  the buffered image since it is an 

image 

  */ 

 public Image getImage() 

 { 

   return bufferedImage; 

 } 

 

 /** 

  * Method to return the pixel value as an int for 

the 

  * given x and y location 

  * @param x the x coordinate of the pixel 

  * @param y the y coordinate of the pixel 

  * @return the pixel value as an integer (alpha, 

red, 

  * green, blue) 

  */ 

 public int getBasicPixel(int x, int y) 

 { 

    return bufferedImage.getRGB(x,y); 

 } 



 

 /** 

  * Method to set the value of a pixel in the 

picture 

  * from an int 

  * @param x the x coordinate of the pixel 

  * @param y the y coordinate of the pixel 

  * @param rgb the new rgb value of the pixel 

(alpha, red, 

  * green, blue) 

  */ 

 public void setBasicPixel(int x, int y, int rgb) 

 { 

   bufferedImage.setRGB(x,y,rgb); 

 } 

 

 /** 

  * Method to get a pixel object for the given x 

and y 

  * location 

  * @param x  the x location of the pixel in the 

picture 

  * @param y  the y location of the pixel in the 

picture 

  * @return a Pixel object for this location 

  */ 

 public Pixel getPixel(int x, int y) 

 { 

   // create the pixel object for this picture and 

the 

   // given x and y location 

   Pixel pixel = new Pixel(this,x,y); 

   return pixel; 

 } 

 

 /** 

  * Method to get a one-dimensional array of 

Pixels for 

  * this simple picture 

  * @return a one-dimensional array of Pixel 

objects 

  * starting with y=0 

  * to y=height-1 and x=0 to x=width-1. 

  */ 

 public Pixel[] getPixels() 

 { 

   int width = getWidth(); 

   int height = getHeight(); 

   Pixel[] pixelArray = new Pixel[width * height]; 

 

   // loop through height rows from top to bottom 

   for (int row = 0; row < height; row++) 

     for (int col = 0; col < width; col++) 

       pixelArray[row * width + col] = 

                                  new 

Pixel(this,col,row); 



 

   return pixelArray; 

 } 

 

 

 

 /** 

  * Method to load the buffered image with the 

passed 

  * image 

  * @param image  the image to use 

  */ 

 public void load(Image image) 

 { 

   // get a graphics context to use to draw on the 

   // buffered image 

   Graphics2D graphics2d = 

bufferedImage.createGraphics(); 

 

   // draw the image on the buffered image 

starting 

   // at 0,0 

   graphics2d.drawImage(image,0,0,null); 

 

   // show the new image 

   show(); 

 } 

 

 /** 

  * Method to show the picture in a picture frame 

  */ 

 public void show() 

 { 

    // if there is a current picture frame then 

use it 

   if (pictureFrame != null) 

     pictureFrame.updateImageAndShowIt(); 

 

   // else create a new picture frame with this 

picture 

   else 

     pictureFrame = new PictureFrame(this); 

 } 

 

 /** 

  * Method to hide the picture 

  */ 

 public void hide() 

 { 

   if (pictureFrame != null) 

     pictureFrame.setVisible(false); 

 } 

 

 /** 

  * Method to make this picture visible or not 

  * @param flag true if you want it visible else 



false 

  */ 

 public void setVisible(boolean flag) 

 { 

   if (flag) 

     this.show(); 

   else 

     this.hide(); 

 } 

 

 /** 

  * Method to open a picture explorer on a copy of 

this 

  * simple picture 

  */ 

 public void explore() 

 { 

   // create a copy of the current picture and 

explore it 

   new PictureExplorer(new SimplePicture(this)); 

 } 

 

 /** 

  * Method to force the picture to redraw itself.  

This is 

  * very useful after you have changed the pixels 

in a 

  * picture. 

  */ 

 public void repaint() 

 { 

   // if there is a picture frame tell it to 

repaint 

   if (pictureFrame != null) 

     pictureFrame.repaint(); 

 

   // else create a new picture frame 

   else 

     pictureFrame = new PictureFrame(this); 

 } 

 

 /** 

  * Method to load the picture from the passed 

file name 

  * @param fileName the file name to use to load 

the 

  * picture from 

  */ 

 public void loadOrFail( 

                       String fileName) throws 

IOException 

 { 

    // set the current picture's file name 

   this.fileName = fileName; 

 

   // set the extension 



   int posDot = fileName.indexOf('.'); 

   if (posDot >= 0) 

     this.extension = fileName.substring(posDot + 

1); 

 

   // if the current title is null use the file 

name 

   if (title == null) 

     title = fileName; 

 

   File file = new File(this.fileName); 

 

   if (!file.canRead()) 

   { 

     // try adding the media path 

     file = new File( 

                 

FileChooser.getMediaPath(this.fileName)); 

     if (!file.canRead()) 

     { 

       throw new IOException(this.fileName + " 

could not" 

       + " be opened. Check that you specified the 

path"); 

     } 

   } 

 

   bufferedImage = ImageIO.read(file); 

 } 

 

 

 /** 

  * Method to write the contents of the picture to 

a file 

  * with the passed name without throwing errors 

  * (THIS MAY NOT BE A VALID DESCRIPTION - RGB) 

  * @param fileName the name of the file to write 

the 

  * picture to 

  * @return true if success else false 

  */ 

 public boolean load(String fileName) 

 { 

     try { 

         this.loadOrFail(fileName); 

         return true; 

 

     } catch (Exception ex) { 

         System.out.println("There was an error 

trying" 

                                + " to open " + 

fileName); 

         bufferedImage = new 

BufferedImage(600,200, 

                              

BufferedImage.TYPE_INT_RGB); 



         addMessage("Couldn't load " + 

fileName,5,100); 

         return false; 

     } 

 

 } 

 

 

 /** 

  * Method to load the picture from the passed 

file name 

  * this just calls load(fileName) and is for name 

  * compatibility 

  * @param fileName the file name to use to load 

the 

  * picture from 

  * @return true if success else false 

  */ 

 public boolean loadImage(String fileName) 

 { 

     return load(fileName); 

} 

 

 /** 

  * Method to draw a message as a string on the 

buffered 

  * image 

  * @param message the message to draw on the 

buffered 

  * image 

  * @param xPos  the leftmost point of the string 

in x 

  * @param yPos  the bottom of the string in y 

  */ 

 public void addMessage( 

                       String message, int xPos, 

int yPos) 

 { 

   // get a graphics context to use to draw on the 

   // buffered image 

   Graphics2D graphics2d = 

bufferedImage.createGraphics(); 

 

   // set the color to white 

   graphics2d.setPaint(Color.white); 

 

   // set the font to Helvetica bold style and 

size 16 

   graphics2d.setFont(new 

Font("Helvetica",Font.BOLD,16)); 

 

   // draw the message 

   graphics2d.drawString(message,xPos,yPos); 

 

 } 

 



 /** 

  * Method to draw a string at the given location 

on the 

  * picture 

  * @param text the text to draw 

  * @param xPos the left x for the text 

  * @param yPos the top y for the text 

  */ 

 public void drawString(String text, int xPos, int 

yPos) 

 { 

   addMessage(text,xPos,yPos); 

 } 

 

 /** 

   * Method to create a new picture by scaling the 

   * current picture by the given x and y factors 

   * @param xFactor the amount to scale in x 

   * @param yFactor the amount to scale in y 

   * @return the resulting picture 

   */ 

  public Picture scale(double xFactor, double 

yFactor) 

  { 

    // set up the scale tranform 

    AffineTransform scaleTransform = 

                                    new 

AffineTransform(); 

    scaleTransform.scale(xFactor,yFactor); 

 

    // create a new picture object that is the 

right size 

    Picture result = new Picture( 

                           (int) (getWidth() * 

xFactor), 

                           (int) (getHeight() * 

yFactor)); 

 

    // get the graphics 2d object to draw on the 

result 

    Graphics graphics = result.getGraphics(); 

    Graphics2D g2 = (Graphics2D) graphics; 

 

    // draw the current image onto the result 

image 

    // scaled 

    

g2.drawImage(this.getImage(),scaleTransform,null); 

 

    return result; 

  } 

 

  /** 

   * Method to create a new picture of the passed 

width. 

   * The aspect ratio of the width and height will 



stay 

   * the same. 

   * @param width the desired width 

   * @return the resulting picture 

   */ 

  public Picture getPictureWithWidth(int width) 

  { 

    // set up the scale tranform 

    double xFactor = (double) width / 

this.getWidth(); 

    Picture result = scale(xFactor,xFactor); 

    return result; 

  } 

 

  /** 

   * Method to create a new picture of the passed 

height. 

   * The aspect ratio of the width and height will 

stay 

   * the same. 

   * @param height the desired height 

   * @return the resulting picture 

   */ 

  public Picture getPictureWithHeight(int height) 

  { 

    // set up the scale tranform 

    double yFactor = (double) height / 

this.getHeight(); 

    Picture result = scale(yFactor,yFactor); 

    return result; 

  } 

 

 /** 

  * Method to load a picture from a file name and 

show it 

  * in a picture frame 

  * @param fileName the file name to load the 

picture 

  * from 

  * @return true if success else false 

  */ 

 public boolean loadPictureAndShowIt(String 

fileName) 

 { 

   boolean result = true;// the default is that it 

worked 

 

   // try to load the picture into the buffered 

image from 

   // the file name 

   result = load(fileName); 

 

   // show the picture in a picture frame 

   show(); 

 

   return result; 



 } 

 

 /** 

  * Method to write the contents of the picture to 

a file 

  * with the passed name 

  * @param fileName the name of the file to write 

the 

  * picture to 

  */ 

 public void writeOrFail(String fileName) 

                                        throws 

IOException 

 { 

   //the default is current 

   String extension = this.extension; 

 

   // create the file object 

   File file = new File(fileName); 

   File fileLoc = file.getParentFile(); 

 

   // canWrite is true only when the file exists 

   // already! (alexr) 

   if (!fileLoc.canWrite()) { 

       // System.err.println( 

       // "can't write the file but trying anyway? 

..."); 

        throw new IOException(fileName + 

        " could not be opened. Check to see if you 

can" 

        + " write to the directory."); 

   } 

 

   // get the extension 

   int posDot = fileName.indexOf('.'); 

   if (posDot >= 0) 

       extension = fileName.substring(posDot + 1); 

 

   //write the contents of the buffered image to 

the file 

   // as jpeg 

   ImageIO.write(bufferedImage, extension, file); 

 

 } 

 

 /** 

  * Method to write the contents of the picture to 

a file 

  * with the passed name without throwing errors 

  * @param fileName the name of the file to write 

the 

  * picture to 

  * @return true if success else false 

  */ 

 public boolean write(String fileName) 

 { 



     try { 

         this.writeOrFail(fileName); 

         return true; 

     } catch (Exception ex) { 

         System.out.println( 

                     "There was an error trying to 

write " 

                     + fileName); 

         return false; 

     } 

 

 } 

 

 /** 

  * Method to set the media path by setting the 

directory 

  * to use 

  * @param directory the directory to use for the 

media 

  * path 

  */ 

 public static void setMediaPath(String directory) 

{ 

   FileChooser.setMediaPath(directory); 

 } 

 

 /** 

  * Method to get the directory for the media 

  * @param fileName the base file name to use 

  * @return the full path name by appending 

  * the file name to the media directory 

  */ 

 public static String getMediaPath(String 

fileName) { 

   return FileChooser.getMediaPath(fileName); 

 } 

 

  /** 

   * Method to get the coordinates of the 

enclosing 

   * rectangle after this transformation is 

applied to 

   * the current picture 

   * @return the enclosing rectangle 

   */ 

  public Rectangle2D getTransformEnclosingRect( 

                                    

AffineTransform trans) 

  { 

    int width = getWidth(); 

    int height = getHeight(); 

    double maxX = width - 1; 

    double maxY = height - 1; 

    double minX, minY; 

    Point2D.Double p1 = new Point2D.Double(0,0); 

    Point2D.Double p2 = new 



Point2D.Double(maxX,0); 

    Point2D.Double p3 = new 

Point2D.Double(maxX,maxY); 

    Point2D.Double p4 = new 

Point2D.Double(0,maxY); 

    Point2D.Double result = new 

Point2D.Double(0,0); 

    Rectangle2D.Double rect = null; 

 

    // get the new points and min x and y and max 

x and y 

    trans.deltaTransform(p1,result); 

    minX = result.getX(); 

    maxX = result.getX(); 

    minY = result.getY(); 

    maxY = result.getY(); 

    trans.deltaTransform(p2,result); 

    minX = Math.min(minX,result.getX()); 

    maxX = Math.max(maxX,result.getX()); 

    minY = Math.min(minY,result.getY()); 

    maxY = Math.max(maxY,result.getY()); 

    trans.deltaTransform(p3,result); 

    minX = Math.min(minX,result.getX()); 

    maxX = Math.max(maxX,result.getX()); 

    minY = Math.min(minY,result.getY()); 

    maxY = Math.max(maxY,result.getY()); 

    trans.deltaTransform(p4,result); 

    minX = Math.min(minX,result.getX()); 

    maxX = Math.max(maxX,result.getX()); 

    minY = Math.min(minY,result.getY()); 

    maxY = Math.max(maxY,result.getY()); 

 

    // create the bounding rectangle to return 

    rect = new Rectangle2D.Double( 

              minX,minY,maxX - minX + 1, maxY - 

minY + 1); 

    return rect; 

  } 

 

 /** 

  * Method to return a string with information 

about this 

  * picture 

  * @return a string with information about the 

picture 

  */ 

 public String toString() 

 { 

   String output = 

     "Simple Picture, filename " + fileName + 

     " height " + getHeight() + " width " + 

getWidth(); 

   return output; 

 } 

 

} // end of SimplePicture class 



  

Listing 14. Source code for Ericson's DigitalPicture interface.  

import java.awt.Image; 

import java.awt.image.BufferedImage; 

 

/** 

 * Interface to describe a digital picture.  A 

digital 

 * picture can have a associated file name.  

It can have 

 * a title.  It has pixels associated with it 

and you can 

 * get and set the pixels.  You can get an 

Image from a 

 * picture or a BufferedImage.  You can load 

it from a 

 * file name or image.  You can show a 

picture.  You can  

 * create a new image for it. 

 *  

 * Copyright Georgia Institute of Technology 

2004 

 * @author Barb Ericson ericson@cc.gatech.edu 

 */ 

public interface DigitalPicture  

{ 

 // get the file name that the picture came 

from   

 public String getFileName();  

  

 // get the title of the picture  

 public String getTitle();  

 

 // set the title of the picture 

 public void setTitle(String title);  

 

 // get the width of the picture in pixels 

 public int getWidth();  

 

 // get the height of the picture in pixels 

 public int getHeight();  

 

 // get the image from the picture 

 public Image getImage();  

 

 // get the buffered image 

 public BufferedImage getBufferedImage();  

 

 // get the pixel information as an int    

 public int getBasicPixel(int x, int y);  

 

 // set the pixel information 

 public void setBasicPixel(int x, int y, int 



rgb);  

 

 // get the pixel information as an object 

 public Pixel getPixel(int x, int y);  

 

 // load the image into the picture 

 public void load(Image image);  

 

 // load the picture from a file 

 public boolean load(String fileName);  

 

 // show the picture  

 public void show();  

} 

  

Listing 15. Source code for Ericson's PictureFrame class.  

import javax.swing.*; 

import java.awt.*; 

 

/** 

 * Class that holds a digital picture and 

displays it. 

 * 

 * Copyright Georgia Institute of Technology 

2004 

 * @author Barb Ericson 

 */ 

public class PictureFrame 

{ 

 

  ////////////////// fields 

//////////////////////////// 

 

  /** 

   * Main window used as the frame 

   */ 

  JFrame frame = new JFrame(); 

 

  /** 

   * ImageIcon used to display the picture in 

the label 

   */ 

  ImageIcon imageIcon = new ImageIcon(); 

 

  /** 

   * Label used to display the picture 

   */ 

  private JLabel label = new 

JLabel(imageIcon); 

 

  /** 



   * Digital Picture to display 

   */ 

  private DigitalPicture picture; 

 

  ///////////////// constructors 

//////////////////////// 

 

  /** 

   * A constructor that takes no arguments.  

This is 

   * needed for subclasses of this class 

   */ 

  public PictureFrame() 

  { 

    // set up the frame 

    initFrame(); 

  } 

 

  /** 

   * A constructor that takes a picture to 

display 

   * @param picture  the digital picture to 

display in the 

   * picture frame 

   */ 

  public PictureFrame(DigitalPicture picture) 

  { 

    // set the current object's picture to the 

passed in 

    // picture 

    this.picture = picture; 

 

    // set up the frame 

    initFrame(); 

  } 

 

  ///////////////////////// methods 

////////////////////// 

 

  /** 

   * Method to set the picture to show in this 

picture 

   * frame 

   * @param picture the new picture to use 

   */ 

  public void setPicture(Picture picture) 

  { 

    this.picture = picture; 

    imageIcon.setImage(picture.getImage()); 

    frame.pack(); 

    frame.repaint(); 

  } 

 

  /** 

   * A method to update the picture frame 

image with the 



   * image in the picture 

   */ 

  public void updateImage() 

  { 

    // only do this if there is a picture 

    if (picture != null) 

    { 

      // set the image for the image icon from 

the picture 

      imageIcon.setImage(picture.getImage()); 

 

      // set the title of the frame to the 

title of the 

      // picture 

      frame.setTitle(picture.getTitle()); 

 

    } 

  } 

 

  /** 

   * A method to update the picture frame 

image with the 

   * image in the picture and show it 

   */ 

  public void updateImageAndShowIt() 

  { 

    // first update the image 

    updateImage(); 

 

    // now make sure it is shown 

    frame.setVisible(true); 

  } 

 

  /** 

   * A method to make sure the frame is 

displayed 

   */ 

  public void displayImage() 

  { 

    frame.setVisible(true); 

  } 

 

  /** 

   * A method to hide the frame 

   */ 

  public void hide() 

  { 

    frame.setVisible(false); 

  } 

 

  /** 

   * A method to set the visible flag on the 

frame 

   * @param flag the flag to use 

   */ 

  public void setVisible(boolean flag) 



  { 

    frame.setVisible(flag); 

  } 

 

  /** 

   * A method to close a picture frame 

   */ 

  public void close() 

  { 

    frame.setVisible(false); 

    frame.dispose(); 

  } 

 

  /** 

   * Method to set the title for the picture 

frame 

   * @param title the title to use 

   */ 

  public void setTitle(String title) 

  { 

    frame.setTitle(title); 

  } 

 

  /** 

   * Method to force the picture frame to 

repaint (redraw) 

   */ 

  public void repaint() 

  { 

 

    // make it visible 

    frame.setVisible(true); 

 

    // update the image from the picture 

    updateImage(); 

 

    // tell the JFrame to handle the repaint 

    frame.repaint(); 

  } 

 

  /** 

   * A method to initialize the picture frame 

   */ 

  private void initFrame() 

  { 

 

    // set the image for the picture frame 

    updateImage(); 

 

    // add the label to the frame 

    frame.getContentPane().add(label); 

 

    // pack the frame (set the size to as big 

as it needs 

    // to be) 

    frame.pack(); 



 

    // make the frame visible 

    frame.setVisible(true); 

  } 

 

} 

  

Listing 16. Source code for the program named Java356a.  

/*Program Java356a 

Copyright R.G.Baldwin 2009 

 

The purpose of this program is to illustrate one way to  

take a photograph of a physical object and then  

superimpose it on another photograph. 

 

A desk chair was placed in front of a bookcase. A blue  

sheet was hung on the bookcase to provide a relatively  

solid color background. A green towel was placed on the  

chair to hide the texture in the upholstry. A digital  

photograph of the chair was taken. Then a stuffed tiger  

was placed on the back of the chair and another digital  

photograph was taken. 

 

Picture objects were instantiated from each of the  

photographs. Another Picture object was instantiated from  

an image file showing a beach scene with the same 

dimensions. A fourth Picture object was instantiated with  

the same dimensions and an all-white image. 

 

Methods of the SimplePicture class and the Pixel class  

were used in a pair of nested for loops to compare the  

color distance between corresponding pixels in the two  

photographs to within a specified tolerance. When the  

color distance between the two pixels exceeded a specified 

threshold, the color of the pixel from the photograph 

containing the tiger was copied to the all-white Picture  

object, replacing a white pixel. Otherwise, the color of  

the pixel from the beach image was copied to the all-white 

Picture object. 

 

The results were moderately good. However, lighting is  

critical and I didn't do anything special to control the  

lighting. As a result, a shadow of the tiger that was 

barely noticeable on the blue sheet is very noticeable in  

the final product. 

 

Note:  The idea for this program came directly from the  

book titled Introduction to Computing and Programming with 

Java: A Multimedia Approach by Guzdial and Ericson.  

 

Tested using Windows Vista Premium Home edition and 



Ericson's multimedia library. 

*********************************************************/ 

import java.awt.Color; 

public class Main{ 

  public static void main(String[] args){ 

    new Runner().run(); 

  }//end main method 

}//end class Main 

//------------------------------------------------------// 

 

class Runner{ 

  void run(){ 

    //Construct three new 341x256 Picture objects by 

    // providing the names of image files as parameters 

    // to the Pictue constructor. 

    Picture pic1 = new Picture("ScaledBeach.jpg"); 

    Picture pic2 = new Picture("WithTiger.jpg"); 

    Picture pic3 = new Picture("WithoutTiger.jpg"); 

     

    //Construct an all-white 341x256 Picture object. 

    Picture pic4 = new Picture(341,256); 

     

    //Display all three Picture objects in the show 

    // format. 

    pic1.show(); 

    pic2.show(); 

    pic3.show(); 

 

    //Replace pixel colors in the all-white Picture object 

    // with the colors from either the beach image or the  

    // tiger image. 

    Pixel pixA; 

    Pixel pixB; 

    Pixel pixC; 

    Pixel pixD; 

    for(int row = 0;row < pic1.getHeight() - 1;row++){ 

      for(int col = 0;col < pic1.getWidth() - 1;col++){ 

        pixA = pic1.getPixel(col,row); 

        pixB = pic2.getPixel(col,row); 

        pixC = pic3.getPixel(col,row); 

        pixD = pic4.getPixel(col,row); 

 

        if(pixB.colorDistance(pixC.getColor()) > 50){ 

          //Replace white pixel with the pixel color from  

          // the tiger image. 

          pixD.setColor(pixB.getColor()); 

        }else{ 

          //Replace the white pixel with pixel color from  

          // the beach image. 

          pixD.setColor(pixA.getColor()); 

        }//end else 

      }//end inner for loop 

    }//end outer for loop 

 

    //Display the final product using the show format. 

    pic4.setTitle("Tiger on beach scene"); 



    pic4.show(); 

  }//end run 

}//end class Runner 

  

 

Copyright 

Copyright 2009, Richard G. Baldwin.  Reproduction in whole or in part in any form or 
medium without express written permission from Richard Baldwin is prohibited.  

About the author 

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) 
and private consultant whose primary focus is object-oriented programming using Java 
and other OOP languages. 

Richard has participated in numerous consulting projects and he frequently provides 
onsite training at the high-tech companies located in and around Austin, Texas.  He is 
the author of Baldwin's Programming Tutorials, which have gained a worldwide 
following among experienced and aspiring programmers. He has also published articles 
in JavaPro magazine.  

In addition to his programming expertise, Richard has many years of practical 
experience in Digital Signal Processing (DSP).  His first job after he earned his 
Bachelor's degree was doing DSP in the Seismic Research Department of Texas 
Instruments.  (TI is still a world leader in DSP.)  In the following years, he applied his 
programming and DSP expertise to other interesting areas including sonar and 
underwater acoustics.  

Richard holds an MSEE degree from Southern Methodist University and has many 
years of experience in the application of computer technology to real-world problems.  

Baldwin@DickBaldwin.com  

-end-  

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

