
Adding Animated Movement to Your Java Application

Learn how to add animated movement into your program where multiple objects chase
a lead object as it moves randomly in a given environment.

Published: February 24, 2009
By Richard G. Baldwin

Java Programming Notes # 352

 Preface
o General
o The World class
o Viewing tip

 Figures
 Listings

o Supplementary material
 General background information

o A multimedia class library
o Software installation and testing

 Preview
 Discussion and sample code

o The World class
o Sample program named TurtleWorld01
o The remainder of the World class

 Run the programs
 Summary
 What's next?
 Resources
 Complete program listings
 Copyright
 About the author

Preface

General

This lesson is the next in a series (see Resources) designed to teach you how to write
Java programs to do things like:

 Remove redeye from a photographic image.
 Distort the human voice.
 Display one image inside another image.
 Do edge detection, blurring, and other filtering operations on images.

mailto:Baldwin@DickBaldwin.com

 Insert animated cartoon characters into videos of live humans.

If you have ever wondered how to do these things, you've come to the right place.

The World class

If you have studied the earlier lessons in this series (see Resources), you have learned
all about the Turtle class, its superclass named SimpleTurtle, and the classes from
which a turtle's contained objects are instantiated (Pen and PathSegment). You have
learned how to instantiate new Turtle objects, placing them in either a World object or a
Picture object. You have learned how to manipulate the Turtle objects once you place
them in their environment. The time has come for you to learn about the environment in
which a turtle lives. You will learn about the World class in this lesson. You will learn
about the Picture class in a future lesson.

Viewing tip

I recommend that you open another copy of this document in a separate browser
window and use the following links to easily find and view the figures and listings while
you are reading about them.

Figures

 Figure 1. Screen output from program named TurtleWorld01.

Listings

 Listing 1. Background color for World class code fragments.
 Listing 2. Background color for sample program code fragments.
 Listing 3. Beginning of the program named TurtleWorld01.
 Listing 4. Beginning of the class named Runner.
 Listing 5. One of the overloaded constructors for the World class.
 Listing 6. The initWorld method of the World class.
 Listing 7. Get a reference to the list of turtles.
 Listing 8. The getTurtleList method of the World class.
 Listing 9. Beginning of the run method of the Runner class.
 Listing 10. The setPicture method of the World class.
 Listing 11. Instantiate eight Turtle objects.
 Listing 12. The addModel method of the World class.
 Listing 13. Perform some housekeeping chores.
 Listing 14. Beginning of the animation loop in TurtleWorld01.
 Listing 15. Process each turtle during each animation cycle.
 Listing 16. Control the distance between the turtles.
 Listing 17. The modelChanged method of the World class.
 Listing 18. The leader makes his move.
 Listing 19. The other seven turtles make their move.

 Listing 20. Control the animation speed.
 Listing 21. The getGraphics method of the World class.
 Listing 22. The paintComponent method of the World class.
 Listing 23. Source code for Ericson's class named World.
 Listing 24. Source code for the program named TurtleWorld01.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online
programming tutorials. You will find a consolidated index at www.DickBaldwin.com.

General background information

A multimedia class library

In this series of lessons, I will present and explain many of the classes in a multimedia
class library that was developed and released under a Creative Commons Attribution
3.0 United States License (see Resources) by Mark Guzdial and Barbara Ericson at
Georgia Institute of Technology. In doing this, I will also present some interesting
sample programs that use the library.

Software installation and testing

I explained how to download, install, and test the multimedia class library in an earlier
lesson titled Multimedia Programming with Java, Getting Started (see Resources).

Preview

I will explain Ericson's World class in this lesson. I will also present and explain a
sample animation program in which seven Turtle objects chase another Turtle object
around in an aquarium. A screen shot from the sample program, showing seven turtles
in hot pursuit of a red and green turtle, is shown in Figure 1.

Figure 1. Screen output from program named TurtleWorld01.

http://www.dickbaldwin.com/toc.htm

Discussion and sample code

The World class

A complete listing of the World class is shown in Listing 23 near the end of the
lesson. The only changes that were made to this listing were minor formatting changes
that were required to make the source code fit into this narrow publication format.

Let's try something new

I'm going to try something in this lesson that I have never tried before. I'm going to
explain the World class in the context of a sample program named TurtleWorld01 that
animates a group of turtles in a World object.

As usual, I will explain the code in fragments. However, to help you know whether a
particular code fragment came from the World class or came from the sample program,
I will use two different background colors for the listings of the code fragments. The two
colors are shown in Listing 1 and Listing 2.

Listing 1. Background color for World class code fragments.

World class code fragments.

Listing 2. Background color for sample program code fragments.

Sample program code fragments.

Sample program named TurtleWorld01

This is an animated program that is designed to illustrate various features of the World
class and the Turtle class. (See resources for earlier lessons on the Turtle class.) A
complete listing of the program is provided in Listing 24 near the end of the lesson.

The program places eight Turtle objects in a World object referred to by a variable
named aquarium. One turtle is designated as the leader and is given a red shell to
make it highly visible. (A screen shot from the running program is shown in Figure 1.)

An Image from an aquarium containing a starfish and some other fish is used as a
background picture for the aquarium. The lead turtle has a red shell and a green
body. The body color and the shell color of two of the turtles are set to yellow and
orange to make them stand out from the background. The remaining four turtles are
presented in their default colors of green, cyan, and purple.

Follow the leader

All eight turtles are initially placed in random locations in the aquarium. The lead turtle
swims around randomly. The other seven turtles converge rapidly on the leader and
swim in formation following the leader while attempting to avoid collisions with one
another.

Much of the time, the formation looks roughly like a hexagon with six turtles forming the
perimeter and one turtle in the center. (See Figure 1.)

Once started, the program will run until it is manually terminated.

Beginning of the program named TurtleWorld01

The program begins in Listing 3 by instantiating an object of the Runner class and
calling the run method on that object.

Listing 3. Beginning of the program named TurtleWorld01.

import java.util.Random;

import java.util.Date;

import java.util.List;

import java.awt.Color;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main method

}//end class Main

Beginning of the class named Runner

The Runner class of the TurtleWorld01 program begins in Listing 4.

Listing 4. Beginning of the class named Runner.

class Runner{

 //Instantiate a random number generator.

 Random randGen = new Random(new

Date().getTime());

 //Set the dimensions and instantiate a new

world.

 int aquariumWidth = 450;

 int aquariumHeight = 338;

 World aquarium = new World(

aquariumWidth,aquariumHeight);

The Runner class begins by instantiating a random-number generator object that will be
used later to introduce randomness into the program.

One of the overloaded constructors for the World class

Then the program sets the dimensions to match the background image in Figure 1 and
instantiates a new World object by calling the overloaded World constructor shown in
Listing 5.

Listing 5. One of the overloaded constructors for the World class.

 public World(int w, int h){

 width = w;

 height = h;

 // set up the world and make it visible

 initWorld(true);

 }//end constructor

Listing 5, which is a code fragment from the World class, begins by saving the incoming
width and height values in a pair of private instance variables. (You can view all of the
World's instance variables in Listing 23.) Then it calls the initWorld method, (shown in
Listing 6), passing true as a parameter to complete the construction of the new World
object.

The initWorld method

The incoming boolean parameter to the initWorld method is used to determine if the
world will be visible when it is instantiated.

Listing 6. The initWorld method of the World class.

 private void initWorld(boolean visibleFlag){

 // set the preferred size

 this.setPreferredSize(new

Dimension(width,height));

 // create the background picture

 picture = new Picture(width,height);

 // add this panel to the frame

 frame.getContentPane().add(this);

 // pack the frame

 frame.pack();

 // show this world

 frame.setVisible(visibleFlag);

 }//end initWorld method

Listing 6 begins by calling the setPreferredSize method
inherited from the JComponent class to set the
preferred size of the World object.

Create an all-white background picture

Then Listing 6 instantiates a new default all-white Picture object and assigns the
picture's reference to a private instance variable named picture.

Add the world to a JFrame object

One of the world's private instance variables (see Listing 23) is a reference variable
named frame containing a reference to an empty JFrame object. Listing 6 adds the
new World object to the JFrame object. Therefore, the JFrame object becomes the
visual container for the world.

Then Listing 6 calls the pack method on the JFrame object. This causes the size of the
JFrame object to be set to the preferred size of the world that it contains.

Finally, Listing 6 causes the JFrame object to be visible or not visible, depending on the
boolean value received as an incoming parameter by the initWorld method.

Get reference to the list of turtles

If you examine the instance variables in Listing 23, you will see that the World object
creates and maintains an ArrayList object containing references to all of the turtle
objects that are added to the world. Listing 7, which is a fragment from the
TurtleWorld01 program, gets and saves a reference to that list. The reference will be
used for manipulating the turtles later. The reference is saved as the interface type
List.

The preferred size
I have discussed the preferred

size in many earlier lessons.

Listing 7. Get a reference to the list of turtles.

 //Get a reference to the list of turtles

maintained by

 // the World object.

 List turtleList = aquarium.getTurtleList();

The getTurtleList method of the World class

As you can see in Listing 8, the getTurtleList method simply returns the contents of a
private instance variable named turtleList, which is a reference to the list of turtles.

Listing 8. The getTurtleList method of the World class.

 public List getTurtleList(){

 return turtleList;

 }//end getTurtleList methodd

Beginning of the run method of the Runner class

The run method that was called in Listing 3 begins in Listing 9.

Listing 9. Beginning of the run method of the Runner class.

 void run(){

 aquarium.setPicture(new

Picture("aquarium.gif"));

Listing 9 calls the setPicture method on the World
object to replace the all-white picture with the
background image shown in Figure 1.

The setPicture method of the World class

As you can see in Listing 10, the setPicture method
simply assigns the incoming Picture object's reference
to the instance variable named picture. (See Listing
23.)

Listing 10. The setPicture method of the World
class.

 public void setPicture(Picture pict){

 picture = pict;

 }//end setPicture method

Instantiate eight Turtle objects

The size of the World

Note that the size of the
picture of the aquarium was
determined in advance and
the dimensions of the world
were set to the size of the
picture Listing
4. Otherwise, either a
portion of the world would
be white, or some of the
picture would not be visible.

Listing 11 instantiates eight new Turtle objects and places them in random locations in
the World object referred to by aquarium.

Listing 11. Instantiate eight Turtle objects.

 int numberTurtles = 8;

 //Place each turtle in a random location

in the

 // aquarium.

 for(int cnt=0;cnt < numberTurtles;cnt++){

 int xCoor =

 Math.abs(randGen.nextInt() %

aquariumWidth);

 int yCoor =

 Math.abs(randGen.nextInt() %

aquariumHeight);

 new Turtle(xCoor,yCoor,aquarium);

 }//end for loop

Turtle constructors

You learned in an earlier lesson (see Resources) that
whenever you instantiate a new Turtle object, you can
specify the container in which it will live: Picture object
or ModelDisplay object. You also learned that you can
optionally specify the coordinates at which the turtle will
be placed in that container.

When the container is a ModelDisplay object...

You learned that when the specified container is a ModelDisplay (World) object, the
constructor for the Turtle class:

 Sets the initial position coordinates for the new turtle.
 Sets the initial body color of the new turtle to one of four default colors.
 Sets the initial pen color to match the body color.
 Increments a static turtle counter in the Turtle class.
 Calls the addModel method on the specified ModelDisplay (World) object.

The addModel method of the World class

The addModel method of the World class is shown in Listing 12.

Listing 12. The addModel method of the World class.

 public void addModel(Object model){

 turtleList.add((Turtle) model);

A ModelDisplay object

The World class
implements the
ModelDisplay
interface. Therefore, a
World object is also a
ModelDisplay object.

 if (autoRepaint)

 repaint();

 }//end addModel method

The method begins by adding the new turtle's reference to the world's ArrayList object
that is used to maintain a list of all the turtles that belong to the world.

To paint or not to paint...

Then the addModel method checks the value of a boolean instance variable named
autoRepaint (which is true by default) to determine whether or not to repaint the world
containing the new turtle. The call to the repaint method causes the world's
paintComponent method to be called. I will have more to say about this later.

Perform some housekeeping chores

Listing 13 performs some housekeeping chores in preparation for running the animation
loop in the program named TurtleWorld01.

Listing 13. Perform some housekeeping chores.

 int angle = 0;//leader turning angle

 int leaderMove = 0;//leader move distance

 Turtle turtle = null;

 Turtle testTurtle = null;

 //First turtle in the list is the leader.

Color it red

 // and get its length.

 Turtle leader = (Turtle)turtleList.get(0);

 leader.setShellColor(Color.RED);

 int turtleLength = leader.getHeight();

 //Change the shell and body colors of two

of the other

 // turtles.

 turtle = (Turtle)turtleList.get(3);

 turtle.setBodyColor(Color.YELLOW);

 turtle.setShellColor(Color.ORANGE);

 turtle = (Turtle)turtleList.get(7);

 turtle.setBodyColor(Color.ORANGE);

 turtle.setShellColor(Color.YELLOW);

Most of the actions in Listing 13 involve extracting references to Turtle objects from the
world's list of turtles and calling various methods of the Turtle and SimpleTurtle
classes on those references. You learned about these methods in earlier lessons (see
Resources).

Beginning of the animation loop in TurtleWorld01

The animation loop begins in Listing 14.

Listing 14. Beginning of the animation loop in TurtleWorld01.

 while(true){//animation loop will run

forever

 //Leader will move a random distance

ranging fromm

 // half its length to 3/4 its length

during each

 // animation cycle. leaderMove =

(int)(turtleLength/2

 +

turtleLength*randGen.nextDouble()/4);

 //Leader will turn a random amount

ranging from

 // -22.5 degrees to +22.5 degrees during

each

 // animation cycle.

 angle = (int)(45*(randGen.nextDouble() -

0.5));

The animation loop will continue to run until the program is manually terminated.

Once during each animation cycle, the turtle with the red shell (see Figure 1) turns by a
random amount and moves forward by a random distance. The variables named
leaderMove and angle in Listing 14 are assigned random values that will be used later
to control those actions.

Process each turtle during each animation cycle

Each turtle in the list is processed once during each animation cycle. Listing 15 shows
the beginning of a for loop that iterates on the list of turtles to accomplish that.

Listing 15. Process each turtle during each animation cycle.

 for(int cnt = 0;cnt <

turtleList.size();cnt++){

 turtle = (Turtle)turtleList.get(cnt);

 turtle.penUp();//no turtle tracks

allowed

Control the distance between the turtles

Left strictly to their own devices, all seven of the turtles that are chasing the leader
would attempt to occupy exactly the same space. Listing 16 contains a for loop that
attempts to force those seven turtles to maintain some distance between them.

Listing 16. Control the distance between the turtles.

 for(int cntr = 1;cntr <

turtleList.size();cntr++){

 testTurtle =

(Turtle)turtleList.get(cntr);

 //Don't process leader or self.

 if((testTurtle != turtle) && (cnt !=

0)){

 int separation =

(int)(turtle.getDistance(

testTurtle.getXPos(),testTurtle.getYPos()));

 //Try to keep them separated by

at least

 // twice the turtleLength center

to center

 if(separation < 2*turtleLength){

 //Turn and move away from test

turtle.

 turtle.turnToFace(testTurtle);

 turtle.turn(180);

turtle.forward(turtleLength/3);

 }//end if

 }//end if

 }//end for loop on turtle separation

Maintain a decent separation

The code in Listing 16 computes the distance between each of those seven turtles and
six other turtles, (excluding itself and the leader).

If the distance between the current turtle and a test turtle is below a specified threshold,
the current turtle turns and moves away from the test turtle by a specified
amount. While this algorithm is not perfect, it does a pretty good job of keeping the
turtles separated as you will see if you run the program.

Call the world's modelChanged method

You learned in an earlier lesson that if the heading, the
visibility, or the position of a turtle is changed, the turtle
object calls the world's modelChanged method, which
is shown in Listing 17. The World object may, or may
not cause itself to be repainted in response to that call.

The modelChanged method of the World class

A model-view-control

paradigm
I explained in an earlier lesson

(see Resources) that the call to

the modelChanged method

constitutes part of the use of a

model-view-control (MVC)

paradigm by the World class.

The world's modelChanged method checks the value of the boolean variable named
autoRepaint. If the value is true, the repaint method is called, which in turn causes the
world's paintComponent method to be called. (I'll have more to say about the
paintComponent method later.) Otherwise, it does nothing in response to the call.

Listing 17. The modelChanged method of the World class.

 public void modelChanged(){

 if (autoRepaint)

 repaint();

 }//end modelChanged method

The leader makes his move

Continuing with the for loop that began in Listing 15, if the current turtle being
processed is the first turtle in the list, it is the leader. Its behavior is different from the
behavior of the other seven turtles.

Listing 18 shows the behavior of the leader during one iteration of the animation loop.

Listing 18. The leader makes his move.

 if(cnt == 0){

 //This is the leader

 //Force the leader to bounce off the

walls.

 int xPos = leader.getXPos();

 int yPos = leader.getYPos();

 if(xPos < turtleLength){

 leader.setHeading(90);

 }else if(xPos > aquariumWidth -

turtleLength -2){

 leader.setHeading(-90);

 }//end else

 if(yPos < turtleLength){

 leader.setHeading(180);

 }else if(

 yPos > aquariumHeight -

turtleLength - 2){

 leader.setHeading(0);

 }//end else

 //Leader turns a random amount and

moves a

 // random distance during each

animation cycle.

 leader.turn(angle);

 leader.forward(leaderMove);

Has the leader collided with a wall?

Tests are performed in Listing 18 to determine if the leader has collided with one of the
four walls of the world. If so, the leader's heading is set to the direction of the opposite
wall.

Turn and move randomly

Regardless of whether or not a collision with a wall has occurred, the leader's heading is
modified by a random amount ranging from -22.5 degrees to +22.5 degrees (see Listing
14) and the leader moves forward by a random distance ranging from half its length to
three-fourths of its length (see Listing 14).

The other seven turtles make their move

If the current turtle is not the leader but instead is one of the seven turtles that follow the
leader, the code in Listing 19 is executed.

Listing 19. The other seven turtles make their move.

 }else{

 //This is not the leader. Turn to

face the

 // leader and move toward the

leader.

 turtle.turnToFace(leader);

 int distanceToLeader =

(int)(turtle.getDistance(

leader.getXPos(),leader.getYPos()));

 turtle.forward(distanceToLeader/10);

 }//end else

 }//end for loop processing all turtles

Move towards the leader

Each of the seven turtles in the herd turn to face the new position of the leader and
move toward the leader by one-tenth the distance to the leader. In theory, the members
of the herd would never catch the leader. However, because the leader must turn back
toward the herd when it collides with a wall, there are frequent collisions between the
leader and the members of the herd. The leader simply blasts through the formation,
colliding with other turtles along the way, and goes out the other side of the
formation. This causes the other turtles to turn and give chase in the new direction.

Once again, every time any of the turtles moves or changes its heading, the World
object is given an opportunity to repaint itself.

Listing 19 signals the end of the for loop that causes the processing of every turtle
during each animation cycle.

Control the animation speed

At the end of each animation cycle, the program goes to sleep for 100 milliseconds to
control the overall speed of the animation. This is shown in Listing 20.

Listing 20. Control the animation speed.

 //Control the animation speed.

 try{

 Thread.currentThread().sleep(100);

 }catch(InterruptedException ex){

 }//end catch

 }//end while loop

 }//end run

}//end class runner

Listing 20 also signals the end of the program named TurtleWorld01.

The remainder of the World class

Although that is the end of the program named TurtleWorld01, it is not the end of the
explanation of the class named World. There are several other methods in the World
class that need to be explained.

Two more overloaded constructors

There are two more overloaded constructors for the World class. One receives no
arguments and constructs a world that is visible by default and has a default size. The
other receives a boolean value and constructs a world that may or may not be visible,
depending on the value of the incoming parameter and has a default size.

Both of these constructors are straightforward. You can view the code for these two
constructors in Listing 23.

What is a graphics context?

According to Java Graphics (see Resources):

"First and foremost, you should know that in Java graphics programming,
one of the most important instantiated objects is the graphics context. This

object is an instance of the java.awt.Graphics class, and it refers to an
area of the screen such as an applet. A graphics context provides
methods for all of the drawing operations on its area. It also holds
"contextual" information about such things as the drawing area's clipping
region, painting color, transfer mode, and text font."

Stated differently, if you want to draw on an object using methods of the Graphics class
or the Graphics2D class, you must first get a graphics context on the object on which
you want to draw.

A rectangular area...

I often tell my students that such an object of the Graphics class represents a
rectangular area of the screen or an off-screen buffer in memory. Whatever you draw
on the Graphics object will be drawn on the screen or in the off-screen buffer
memory. (As I recall, it is also possible to get a Graphics object that represents a
rectangular area on a sheet of paper in a printer, but I haven't had a reason to think
about that in a long time.)

The graphics context for a World object

You can get a graphics context on a World object by calling the getGraphics method
shown in Listing 21.

Listing 21. The getGraphics method of the World class.

 public Graphics getGraphics(){

 return picture.getGraphics();

 }//end getGraphics method

Interestingly, when you make that call, what you receive is a reference to the graphics
context belonging to the Picture object that belongs to the World object.

Getting and clearing the world's Picture object

The following methods are available for working with the world's Picture object:

 setPicture(Picture pict) - replaces the world's default all-white picture with a
picture of your choice (see Listing 10).

 getPicture() - returns a reference to the world's current Picture object.
 clearBackground() - replaces the world's current Picture object with an all-white

picture.

These methods are straightforward. You can view the code in Listing 23.

The paintComponent method of the World class

The paintComponent method of the World class is shown in its entirety in Listing 22.

Listing 22. The paintComponent method of the World class.

 public synchronized void

paintComponent(Graphics g){

 Turtle turtle = null;

 // draw the background image

 g.drawImage(picture.getImage(),0,0,null);

 // loop drawing each turtle on the

background image

 Iterator iterator = turtleList.iterator();

 while (iterator.hasNext())

 {

 turtle = (Turtle) iterator.next();

 turtle.paintComponent(g);

 }

 }//end paintComponent method

Update the world's visual representation

When an object of the World class decides, for
whatever reason, that its visual representation on the
screen needs to be updated (see Listing 12 and Listing
17 for example), it makes a call to the repaint method
inherited from the Component class. This ultimately
results in a call to the world's paintComponent
method.

Can be triggered by the operating system

Similarly, when the operating system decides for whatever reason that the world's
screen representation needs to be updated, (such as when it is minimized and then
restored), the operating system causes the world's paintComponent method to be
called.

A reference to a graphics context

When the paintComponent method is called, it receives a reference to a graphics
context that represents an area of the screen that is to
be repainted.

Painting in AWT and Swing
For more information on the

paint mechanisms utilized by

AWT and Swing, including

information on how to write

the most efficient painting

code, see Painting in AWT and

Swing.

Casting the graphics context

Casting the graphics
context reference to type

http://java.sun.com/products/jfc/tsc/articles/painting/index.html
http://java.sun.com/products/jfc/tsc/articles/painting/index.html

Actually an object of the Graphics2D class

The graphics context is received as type Graphics, but
it is actually a reference to an object of the Graphics2D
subclass of Graphics.

Draw the current picture on the graphics context

Listing 22 begins by calling the drawImage method to draw the image contained in the
world's current Picture object on the graphics context. This produced the aquarium
background shown in Figure 1.

Call paintComponent on each of the turtles

Then Listing 22 uses an iterator to loop and call the paintComponent method on each
Turtle object whose reference is stored in the list of turtles, passing the same graphics
context received by the world's paintComponent method.

Draw each turtle and its track

We learned in an earlier lesson (see Resources) that a turtle's paintComponent
method begins by casting the incoming reference of type Graphics to type
Graphics2D. Then it draws the body parts of the turtle at the correct location, in the
correct color with the correct heading. Then it calls the paintComponent method on
the Pen object that belongs to the turtle, passing the same graphics context that it
received.

Drawing the historical turtle track

As a turtle moves with the pen down, the turtle's Pen object maintains a list of historical
turtle movements as type PathSegment. When the paintComponent method is called
on the Pen object, it uses the contents of that list to reconstruct and draw line segments
with the correct width and the correct color representing the turtle's historical
path. Note, however, that the pen was never down in the sample program named
TurtleWorld01 so no turtle tracks are produced. (For an interesting effect, disable the
call to the penUp method in Listing 15.)

The remaining methods of the World class

The world class defines several additional methods that I haven't discussed in this
lesson:

 getLastTurtle - a method to get a reference to the last turtle in the list of turtles.
 containsTurtle - a method to determine if the list contains a reference to a

specific turtle object.
 remove - a method to remove a specific turtle from the list.

Graphics2D makes it
possible to use the methods
of the Graphics2D class to
draw on the graphics
context.

 getWidth - a method to get the width of the World object.
 getHeight - a method to get the height of the World object.
 setAutoPaint - a method to set the value of the autoPaint variable to true or

false.
 setVisible - a method to make the World object visible or invisible.
 getTurtleIterator - a method to get an Iterator object on the list of turtles.
 toString - a method to return a string that describes a World object.

The code for all of the methods in the above list is straightforward. You can view that
code in Listing 23.

That wraps it up

That brings us to the end of the explanation of the class named World and the end of
the explanation of the program named TurtleWorld01.

Run the programs

I encourage you to copy the code from Listing 24, compile the code, and execute
it. Experiment with the code, making changes, and observing the results of your
changes. Make certain that you can explain why your changes behave as they do.

Summary

In this lesson, I have explained an animation program named TurtleWorld01 along with
an explanation of the class named World. The program named TurtleWorld01
illustrates a form of flocking behavior (see Wikipedia: Flocking behavior in Resources)
where a herd of turtles follow a lead turtle as it moves randomly in a World object while
attempting to avoid collisions with one another.

What's next?

In the next lesson, you learn how to write programs using the methods defined in the
Picture and SimplePicture classes that are declared in the DigitalPicture interface.

Resources

 Creative Commons Attribution 3.0 United States License
 Media Computation book in Java - numerous downloads available
 Introduction to Computing and Programming with Java: A Multimedia Approach
 DrJava download site
 DrJava, the JavaPLT group at Rice University
 DrJava Open Source License
 The Essence of OOP using Java, The this and super Keywords

http://creativecommons.org/licenses/by/3.0/us/
http://coweb.cc.gatech.edu/mediaComp-plan/101
http://www.mypearsonstore.com/bookstore/product.asp?isbn=0131496980
http://drjava.sourceforge.net/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.cs.rice.edu/~javaplt/drjava/
http://www.developer.com/java/article.php/1440571

 Threads of Control
 Painting in AWT and Swing
 Wikipedia Turtle Graphics
 IsA or HasA
 Vector Cad-Cam XI Lathe Tutorial
 Classification of 3D to 2D projections
 200 Implementing the Model-View-Controller Paradigm using Observer and

Observable
 300 Java 2D Graphics, Nested Top-Level Classes and Interfaces
 302 Java 2D Graphics, The Point2D Class
 304 Java 2D Graphics, The Graphics2D Class
 306 Java 2D Graphics, Simple Affine Transforms
 308 Java 2D Graphics, The Shape Interface, Part 1
 310 Java 2D Graphics, The Shape Interface, Part 2
 312 Java 2D Graphics, Solid Color Fill
 314 Java 2D Graphics, Gradient Color Fill
 316 Java 2D Graphics, Texture Fill
 318 Java 2D Graphics, The Stroke Interface
 320 Java 2D Graphics, The Composite Interface and Transparency
 322 Java 2D Graphics, The Composite Interface, GradientPaint, and

Transparency
 324 Java 2D Graphics, The Color Constructors and Transparency
 400 Processing Image Pixels using Java, Getting Started

402 Processing Image Pixels using Java, Creating a Spotlight
404 Processing Image Pixels Using Java: Controlling Contrast and Brightness
406 Processing Image Pixels, Color Intensity, Color Filtering, and Color Inversion
408 Processing Image Pixels, Performing Convolution on Images
410 Processing Image Pixels, Understanding Image Convolution in Java
412 Processing Image Pixels, Applying Image Convolution in Java, Part 1

414 Processing Image Pixels, Applying Image Convolution in Java, Part 2
416 Processing Image Pixels, An Improved Image-Processing Framework in
Java
418 Processing Image Pixels, Creating Visible Watermarks in Java
450 A Framework for Experimenting with Java 2D Image-Processing Filters
452 Using the Java 2D LookupOp Filter Class to Process Images
454 Using the Java 2D AffineTransformOp Filter Class to Process Images
456 Using the Java 2D LookupOp Filter Class to Scramble and Unscramble
Images
458 Using the Java 2D BandCombineOp Filter Class to Process Images
460 Using the Java 2D ConvolveOp Filter Class to Process Images
462 Using the Java 2D ColorConvertOp and RescaleOp Filter Classes to
Process Images

 506 JavaBeans, Introspection
 2100 Understanding Properties in Java and C#
 2300 Generics in J2SE, Getting Started
 340 Multimedia Programming with Java, Getting Started

http://www.dickbaldwin.com/java/Java058.htm
http://java.sun.com/products/jfc/tsc/articles/painting/
http://en.wikipedia.org/wiki/Turtle_graphics/
http://www.devx.com/tips/Tip/5809
http://www.vectorcad3d.com/support/lathetutorial.htm
http://local.wasp.uwa.edu.au/~pbourke/geometry/classification/
http://www.dickbaldwin.com/java/Java200.htm
http://www.dickbaldwin.com/java/Java300.htm
http://www.dickbaldwin.com/java/Java302.htm
http://www.dickbaldwin.com/java/Java304.htm
http://www.dickbaldwin.com/java/Java306.htm
http://www.dickbaldwin.com/java/Java308.htm
http://www.dickbaldwin.com/java/Java310.htm
http://www.dickbaldwin.com/java/Java312.htm
http://www.dickbaldwin.com/java/Java314.htm
http://www.dickbaldwin.com/java/Java316.htm
http://www.dickbaldwin.com/java/Java318.htm
http://www.dickbaldwin.com/java/Java320.htm
http://www.dickbaldwin.com/java/Java322.htm
http://www.dickbaldwin.com/java/Java324.htm
http://www.developer.com/java/other/article.php/3403921
http://www.developer.com/java/other/article.php/3423661
http://www.developer.com/java/other/article.php/3441391
http://www.developer.com/java/other/article.php/3512456
http://www.developer.com/java/other/article.php/3522711
http://www.developer.com/java/other/article.php/3579206
http://www.developer.com/java/ent/article.php/3590351
http://www.developer.com/java/other/article.php/3596351
http://www.developer.com/java/other/article.php/3640776
http://www.developer.com/java/other/article.php/3650011
http://www.developer.com/java/other/article.php/3645761
http://www.developer.com/java/other/article.php/3654171
http://www.developer.com/java/other/article.php/3670696
http://www.developer.com/java/other/article.php/3681466
http://www.developer.com/java/other/article.php/3686856
http://www.developer.com/java/other/article.php/3696676
http://www.developer.com/java/other/article.php/3698981
http://www.dickbaldwin.com/java/Java506.htm
http://www.developer.com/java/other/article.php/2114451
http://www.developer.com/java/other/article.php/3495121
http://www.developer.com/java/other/article.php/3782471

 342 Getting Started with the Turtle Class: Multimedia Programming with Java
 344 Continuing with the SimpleTurtle Class: Multimedia Programming with Java
 346 Wrapping Up the SimpleTurtle Class: Multimedia Programming with Java
 348 The Pen and PathSegment Classes: Multimedia Programming with Java
 349 A Pixel Editor Program in Java: Multimedia Programming with Java
 350 3D Displays, Color Distance, and Edge Detection
 351 A Slider-Controlled Softening Program for Digital Photos

Complete program listings

Complete listings of the programs discussed in this lesson are shown in Listing 23 and
Listing 24 below.

Listing 23. Source code for Ericson's class named World.

import javax.swing.*;

import java.util.List;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.Observer;

import java.awt.*;

/**

 * Class to represent a 2d world that can hold

turtles and

 * display them

 *

 * Copyright Georgia Institute of Technology

2004

 * @author Barb Ericson ericson@cc.gatech.edu

 */

public class World

 extends JComponent implements

ModelDisplay{

 ////////////////// fields

///////////////////////

 /** should automatically repaint when model

changed */

 private boolean autoRepaint = true;

 /** the background color for the world */

 private Color background = Color.white;

 /** the width of the world */

 private int width = 640;

 /** the height of the world */

 private int height = 480;

 /** the list of turtles in the world */

 private List<Turtle> turtleList =

http://www.developer.com/java/other/article.php/3788086
http://www.developer.com/java/other/article.php/3791291
http://www.developer.com/java/other/article.php/3793401
http://www.dickbaldwin.com/java/Java348.htm
http://www.developer.com/java/other/article.php/3795761
http://www.developer.com/java/other/article.php/3798646%20target=
http://www.developer.com/java/other/article.php/3801671

 new

ArrayList<Turtle>();

 /** the JFrame to show this world in */

 private JFrame frame = new JFrame("World");

 /** background picture */

 private Picture picture = null;

 ////////////////// the constructors

///////////////

 /**

 * Constructor that takes no arguments

 */

 public World()

 {

 // set up the world and make it visible

 initWorld(true);

 }

 /**

 * Constructor that takes a boolean to

 * say if this world should be visible

 * or not

 * @param visibleFlag if true will be

visible

 * else if false will not be visible

 */

 public World(boolean visibleFlag)

 {

 initWorld(visibleFlag);

 }

 /**

 * Constructor that takes a width and height

for this

 * world

 * @param w the width for the world

 * @param h the height for the world

 */

 public World(int w, int h)

 {

 width = w;

 height = h;

 // set up the world and make it visible

 initWorld(true);

 }

 ///////////////// methods

///////////////////////////

 /**

 * Method to initialize the world

 * @param visibleFlag the flag to make the

world

 * visible or not

 */

 private void initWorld(boolean visibleFlag)

 {

 // set the preferred size

 this.setPreferredSize(new

Dimension(width,height));

 // create the background picture

 picture = new Picture(width,height);

 // add this panel to the frame

 frame.getContentPane().add(this);

 // pack the frame

 frame.pack();

 // show this world

 frame.setVisible(visibleFlag);

 }

 /**

 * Method to get the graphics context for

drawing on

 * @return the graphics context of the

background

 * picture

 */

 public Graphics getGraphics(){

 return picture.getGraphics();

 }

 /**

 * Method to clear the background picture

 */

 public void clearBackground(){

 picture = new Picture(width,height);

 }

 /**

 * Method to get the background picture

 * @return the background picture

 */

 public Picture getPicture() { return

picture; }

 /**

 * Method to set the background picture

 * @param pict the background picture to use

 */

 public void setPicture(Picture pict) {

picture = pict; }

 /**

 * Method to paint this component

 * @param g the graphics context

 */

 public synchronized void

paintComponent(Graphics g)

 {

 Turtle turtle = null;

 // draw the background image

 g.drawImage(picture.getImage(),0,0,null);

 // loop drawing each turtle on the

background image

 Iterator iterator = turtleList.iterator();

 while (iterator.hasNext())

 {

 turtle = (Turtle) iterator.next();

 turtle.paintComponent(g);

 }

 }

 /**

 * Method to get the last turtle in this

world

 * @return the last turtle added to this

world

 */

 public Turtle getLastTurtle()

 {

 return (Turtle)

turtleList.get(turtleList.size() - 1);

 }

 /**

 * Method to add a model to this model

displayer

 * @param model the model object to add

 */

 public void addModel(Object model)

 {

 turtleList.add((Turtle) model);

 if (autoRepaint)

 repaint();

 }

 /**

 * Method to check if this world contains

the passed

 * turtle

 * @return true if there else false

 */

 public boolean containsTurtle(Turtle turtle)

 {

 return (turtleList.contains(turtle));

 }

 /**

 * Method to remove the passed object from

the world

 * @param model the model object to remove

 */

 public void remove(Object model)

 {

 turtleList.remove(model);

 }

 /**

 * Method to get the width in pixels

 * @return the width in pixels

 */

 public int getWidth() { return width; }

 /**

 * Method to get the height in pixels

 * @return the height in pixels

 */

 public int getHeight() { return height; }

 /**

 * Method that allows the model to notify

the display

 */

 public void modelChanged()

 {

 if (autoRepaint)

 repaint();

 }

 /**

 * Method to set the automatically repaint

flag

 * @param value if true will auto repaint

 */

 public void setAutoRepaint(boolean value){

 autoRepaint = value;

 }

 /**

 * Method to hide the frame

 */

// public void hide()

// {

// frame.setVisible(false);

// }

 /**

 * Method to show the frame

 */

// public void show()

// {

// frame.setVisible(true);

// }

 /**

 * Method to set the visibility of the world

 * @param value a boolean value to say if

should show

 * or hide

 */

 public void setVisible(boolean value)

 {

 frame.setVisible(value);

 }

 /**

 * Method to get the list of turtles in the

world

 * @return a list of turtles in the world

 */

 public List getTurtleList()

 { return turtleList;}

 /**

 * Method to get an iterator on the list of

turtles

 * @return an iterator for the list of

turtles

 */

 public Iterator getTurtleIterator()

 { return turtleList.iterator();}

 /**

 * Method that returns information about

this world

 * in the form of a string

 * @return a string of information about

this world

 */

 public String toString()

 {

 return "A " + getWidth() + " by " +

getHeight() +

 " world with " + turtleList.size()

 + "

turtles in it.";

 }

} // end of World class

Listing 24. Source code for the program named TurtleWorld01.

/*Program TurtleWorld01

Copyright R.G.Baldwin 2009

This is an animated program that is designed to illustrate

various features of the Turtle and World classes.

The program places eight Turtle objects in a World object

known as the aquarium. One turtle is designated as the

leader and is given a red shell to make it highly visible.

An Image from an aquarium containing a starfish and some

other fish is used as a background picture for the

aquarium.

The body color and shell color of two other turtles are

set to yellow and orange to make them stand out from the

background.

The leader swims around randomly in the aquarium.

All eight turtles are initially placed in random locations

in the aquarium. However, the other seven turtles rapidly

converge on the leader and swim in formation following the

leader while attempting to avoid collisions with one

another.

Much of the time, the formation looks roughly like a

hexagon with six turtles forming the perimeter and one

turtle in the center.

Once started, the program will run until it is manually

terminated.

Tested using Windows Vista Premium Home edition and

Ericson's multimedia library.

***/

import java.util.Random;

import java.util.Date;

import java.util.List;

import java.awt.Color;

public class Main{

 public static void main(String[] args){

 new Runner().run();

 }//end main method

}//end class Main

//--//

class Runner{

 //Instantiate a random number generator.

 Random randGen = new Random(new Date().getTime());

 //Set the dimensions and instantiate a new world.

 int aquariumWidth = 450;

 int aquariumHeight = 338;

 World aquarium = new World(

 aquariumWidth,aquariumHeight);

 //Get a reference to the list of turtles maintained by

 // the World object.

 List turtleList = aquarium.getTurtleList();

 //--//

 void run(){

 aquarium.setPicture(new Picture("aquarium.gif"));

 int numberTurtles = 8;

 //Place each turtle in a random location in the

 // aquarium.

 for(int cnt=0;cnt < numberTurtles;cnt++){

 int xCoor =

 Math.abs(randGen.nextInt() % aquariumWidth);

 int yCoor =

 Math.abs(randGen.nextInt() % aquariumHeight);

 new Turtle(xCoor,yCoor,aquarium);

 }//end for loop

 int angle = 0;//leader turning angle

 int leaderMove = 0;//leader move distance

 Turtle turtle = null;

 Turtle testTurtle = null;

 //First turtle in the list is the leader. Color it red

 // and get its length.

 Turtle leader = (Turtle)turtleList.get(0);

 leader.setShellColor(Color.RED);

 int turtleLength = leader.getHeight();

 //Change the shell and body colors of two of the other

 // turtles.

 turtle = (Turtle)turtleList.get(3);

 turtle.setBodyColor(Color.YELLOW);

 turtle.setShellColor(Color.ORANGE);

 turtle = (Turtle)turtleList.get(7);

 turtle.setBodyColor(Color.ORANGE);

 turtle.setShellColor(Color.YELLOW);

 while(true){//animation loop will run forever

 //Leader will move a random distance ranging from

 // half its length to 3/4 its length during each

 // animation cycle.

 leaderMove = (int)(turtleLength/2

 + turtleLength*randGen.nextDouble()/4);

 //Leader will turn a random amount ranging from

 // -22.5 degrees to +22.5 degrees during each

 // animation cycle.

 angle = (int)(45*(randGen.nextDouble() - 0.5));

 //Process each turtle in the list during each

 // animation cycle.

 for(int cnt = 0;cnt < turtleList.size();cnt++){

 turtle = (Turtle)turtleList.get(cnt);

 turtle.penUp();//no turtle tracks allowed

 //Force the turtles to maintain some distanced

 // between them by comparing the distance from the

 // current turtle to every other turtle (other

 // than the leader) and making a correction when

 // too close.

 for(int cntr = 1;cntr < turtleList.size();cntr++){

 testTurtle = (Turtle)turtleList.get(cntr);

 //Don't process leader or self.

 if((testTurtle != turtle) && (cnt != 0)){

 int separation = (int)(turtle.getDistance(

 testTurtle.getXPos(),testTurtle.getYPos()));

 //Try to keep them separated by at least

 // twice the turtleLength center to center

 if(separation < 2*turtleLength){

 //Turn and move away from test turtle.

 turtle.turnToFace(testTurtle);

 turtle.turn(180);

 turtle.forward(turtleLength/3);

 }//end if

 }//end if

 }//end for loop on turtle separation

 if(cnt == 0){

 //This is the leader

 //Force the leader to bounce off the walls.

 int xPos = leader.getXPos();

 int yPos = leader.getYPos();

 if(xPos < turtleLength){

 leader.setHeading(90);

 }else if(xPos > aquariumWidth -turtleLength -2){

 leader.setHeading(-90);

 }//end else

 if(yPos < turtleLength){

 leader.setHeading(180);

 }else if(

 yPos > aquariumHeight -turtleLength - 2){

 leader.setHeading(0);

 }//end else

 //Leader turns a random amount and moves a

 // random distance during each animation cycle.

 leader.turn(angle);

 leader.forward(leaderMove);

 }else{

 //This is not the leader. Turn to face the

 // leader and move toward the leader.

 turtle.turnToFace(leader);

 int distanceToLeader = (int)(turtle.getDistance(

 leader.getXPos(),leader.getYPos()));

 turtle.forward(distanceToLeader/10);

 }//end else

 }//end for loop processing all turtles

 //Control the animation speed.

 try{

 Thread.currentThread().sleep(100);

 }catch(InterruptedException ex){

 }//end catch

 }//end while loop

 }//end run

}//end class runner

Copyright

Copyright 2009, Richard G. Baldwin. Reproduction in whole or in part in any form or
medium without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX)
and private consultant whose primary focus is object-oriented programming using Java
and other OOP languages.

Richard has participated in numerous consulting projects and he frequently provides
onsite training at the high-tech companies located in and around Austin, Texas. He is
the author of Baldwin's Programming Tutorials, which have gained a worldwide
following among experienced and aspiring programmers. He has also published articles
in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical
experience in Digital Signal Processing (DSP). His first job after he earned his
Bachelor's degree was doing DSP in the Seismic Research Department of Texas
Instruments. (TI is still a world leader in DSP.) In the following years, he applied his
programming and DSP expertise to other interesting areas including sonar and
underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many
years of experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

mailto:Baldwin@DickBaldwin.com
http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

