
Processing Image Pixels, Performing Convolution on Images

Learn to write Java programs that use convolution (flat filters and Gaussian filters) to smooth or

blur an image. Also learn how to write jpg files containing specialized images that are useful for

testing image-processing programs.

Published: July 26, 2005

By Richard G. Baldwin

Java Programming, Notes # 408

 Preface

 Background Information

 Preview

 Discussion and Sample Code

 Interpretation of Results

 Run the Program

 Summary

 What's Next

 Complete Program Listings

Preface

Next in a series

This is the next lesson in a series designed to teach you how to use Java to create special effects

with images by directly manipulating the pixels in the images.

The first lesson in the series was titled Processing Image Pixels using Java, Getting Started. The

previous lesson was titled Processing Image Pixels, Color Intensity, Color Filtering, and Color

Inversion. This lesson builds upon those earlier lessons. You will need to understand the code in

the lesson titled Processing Image Pixels using Java, Getting Started before the code in this

lesson will make much sense.

Not a lesson on JAI

The lessons in this series do not provide instructions on how to use the Java Advanced Imaging

(JAI) API. (That will be the primary topic for a future series of lessons.) The purpose of this

series is to teach you how to implement common image-processing algorithms by working

directly with the pixels.

(However, this lesson does present two programs that make heavy use of the JAI

API without providing much in the way of an explanation as to how they do what

http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49942/latest/?collection=col11642/latest
http://cnx.org/content/m49942/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest

they do. These two programs are used to create jpg files, which in turn are used

as input to the two primary image-processing programs that I will explain in this

lesson.)

You will need a driver program

The lesson titled Processing Image Pixels Using Java: Controlling Contrast and Brightness

provided and explained a program named ImgMod02a that makes it easy to:

 Manipulate and modify the pixels that belong to an image.

 Display the processed image along with the original image.

ImgMod02a serves as a driver that controls the execution of a second program that actually

processes the pixels.

The image-processing programs that I will explain in this lesson run under the control of

ImgMod02a. You will need to go to the lessons titled Processing Image Pixels Using Java:

Controlling Contrast and Brightness and Processing Image Pixels using Java, Getting Started to

get copies of the program named ImgMod02a and the interface named ImgIntfc02 in order to

compile and run the programs that I will provide in this lesson.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Display format

The output shown in Figure 1 was produced by the driver program named ImgMod02a and the

image-processing program named ImgMod24.

http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest

Figure 1

As in all of the graphic output produced by the driver program named ImgMod02a, the original

image is shown at the top and the processed image is shown at the bottom.

An interactive image-processing program

The image-processing program illustrated by Figure 1 allows the user to interactively control

certain aspects of the process that I will describe later.

Figure 2

Figure 2 shows the control panel through which the user interactively controls that process. The

user enters an integer value into the text field in Figure 2 and then presses the Replot button at

the bottom of Figure 1 to cause the process to be rerun using the new input value.

Theoretical basis and practical implementation

While discussing the lessons in this series, I will provide some of the theoretical basis for

special-effects algorithms. In addition, I will show you how to implement those algorithms in

Java.

Background Information

The earlier lesson titled Processing Image Pixels using Java, Getting Started provided a great

deal of background information as to how images are constructed, stored, transported, and

rendered. I won't repeat that material here, but will simply refer you to the earlier lesson.

The earlier lesson introduced and explained the concept of a pixel. In addition, the lesson

provided a brief discussion of image files, and indicated that the program named ImgMod02a is

compatible with gif files, jpg files, and possibly some other file formats as well.

The lessons in this series are not particularly concerned with file formats. Rather, the lessons are

concerned with what to do with the pixels after they have been extracted from an image file.

Therefore, there is very little discussion about file formats.

A three-dimensional array of pixel data as type int

The driver program named ImgMod02a:

 Extracts the pixels from an image file.

 Converts the pixel data to type int.

 Stores the pixel data in a three-dimensional array of type int that is well suited for

processing.

 Passes the three-dimensional array object's reference to an image-processing program.

 Receives a reference to a three-dimensional array object containing processed pixel data

from the image-processing program.

 Displays the original image and the processed image in a stacked display as shown in

Figure 1.

 Makes it possible for the user to provide new input data to the image-processing program,

invoke the image-processing program again, and create a new display showing the

newly-processed image along with the original image.

The manner in which that is accomplished was explained in the earlier lesson titled Processing

Image Pixels using Java, Getting Started.

Will concentrate on the three-dimensional array of type int

This and future lessons in this series will show you how to write image-processing programs that

implement a variety of image-processing algorithms. The image-processing programs will

receive raw pixel data in the form of a three-dimensional array of type int, and will return

processed pixel data in the form of a three-dimensional array of type int.

A grid of colored pixels

Each three-dimensional array object represents one image consisting of a grid of colored pixels.

The pixels in the grid are arranged in rows and columns when they are rendered. One of the

dimensions of the array represents rows. A second dimension represents columns. The third

dimension represents the color (and transparency) of the pixels.

http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest

Fundamentals

Once again, I will refer you to the earlier lesson titled Processing Image Pixels using Java,

Getting Started to learn:

 How the primary colors of red, green, and blue and the transparency of a pixel are

represented by four unsigned 8-bit bytes of data.

 How specific colors are created by mixing different amounts of red, green, and blue.

 How the range of each primary color and the range of transparency extends from 0 to

255.

 How black, white, and the colors in between are created.

 How the overall color of each individual pixel is determined by the values stored in the

three color bytes for that pixel, as modified by the transparency byte.

Convolution in one dimension

The earlier lesson titled Convolution and Frequency Filtering in Java taught you about

performing convolution in one dimension. In that lesson, I showed you how to apply a

convolution operator to a sampled time series in one dimension. As you may recall, the

mathematical process in one dimension involves the following steps:

 Register the n-point convolution operator with the first n samples in the time series.

 Compute an output point value, which is the sum of the products of the convolution

operator values and the corresponding time series values.

 Move the convolution operator one step forward, registering it with the next n samples in

the time series and compute the next output point value as a sum of products.

 Repeat this process until all samples in the time series have been processed.

Convolution in two dimensions

Convolution in two dimensions involves essentially the same steps except that in this case we are

dealing with three different 3D sampled surfaces and a 3D convolution operator instead of a

simple sampled time series.

(There is a red surface, a green surface, and a blue surface, each of which must

be processed. Each surface has width and height corresponding to the first two

dimensions of the 3D surface. In addition, each sampled value that represents the

surface can be different. This constitutes the third dimension of the surface. There

is also an alpha or transparency surface that could be processed, but the

programs in this lesson don't process the alpha surface. Similarly, the convolution

operator has three dimensions corresponding to width, height, and the values of

the coefficients in the operator.)

Lots of arithmetic required

http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49812/latest/?collection=col11642/latest

Because each surface has three dimensions and there are three surfaces to be processed by a 3D

convolution operator, the amount of arithmetic that must be performed can be quite large.

Therefore, we will be looking for ways to make the arithmetic process more efficient than might

be the case if we were to approach the problem simply using a brute-force multiply-add

approach.

Steps in the processing

Basically, the steps involved in processing each of the three surfaces to produce an output

surface consist of:

 Register the 2D aspect (width and height) of the convolution operator with the first 2D

area centered on the first row of samples on the input surface.

 Compute a point for the output surface, by computing the sum of the products of the

convolution operator values and the corresponding input surface values.

 Move the convolution operator one step forward along the row, registering it with the

next 2D area on the surface and compute the next point on the output surface as a sum of

products. When that row has been completely processed, move the convolution operator

to the beginning of the next row, registering with the corresponding 2D area on the input

surface and compute the next point for the output surface.

 Repeat this process until all samples in the surface have been processed.

Repeat once for each color surface

Repeat the above set of steps three times, once for each of the three color surfaces.

Watch out for the edges

As you will see later, special care must be taken to avoid having the edges of the convolution

operator extend outside the boundaries of the input surface.

The size of the convolution operator

One of the most important issues in performing convolution on images has to do with the ability

to vary the 2D aspect of the size of the convolution operator. The two programs that I will

explain in this lesson approach this process in two different ways.

A Gaussian shape with a round footprint

The program named ImgMod24 begins with a flat 3x3 square convolution operator and allows

the user to effectively increase the size and the 3D shape of the operator by performing multiple

successive convolution operations on the input surface. In this case, the effective 3D shape of the

convolution operator approaches a Gaussian shape with a round footprint as more and more

successive convolutions are performed.

(I will explain what I mean by a Gaussian shape with a round footprint later.)

A totally flat convolution operator

The program named ImgMod12 allows the user to specify the size of a flat rectangular

convolution operator. For small operator sizes, the shape of the operator can be a rectangle. For

large operator sizes, the shape of the operator is constrained to be a perfect square. In all cases,

the 3D shape of the operator remains flat. This greatly reduces the arithmetic required to perform

the processing.

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

Preview

Five programs and one interface

The image-processing programs that I will discuss in this lesson require the program named

ImgMod02a and the interface named ImgIntfc02 for compilation and execution. I provided and

explained that material in the earlier lessons titled Processing Image Pixels Using Java:

Controlling Contrast and Brightness and Processing Image Pixels using Java, Getting Started.

I will present and explain two new Java programs named ImgMod12 and ImgMod24 in this

lesson. These programs, when run under control of the program named ImgMod02a, will

produce outputs similar to Figure 1.

(The results will be different if you use a different image file or provide different

user input values.)

In addition, I will present, but will not fully explain, two programs named ImgMaker01 and

ImgMaker02. These two programs will be used to produce output jpg files that are useful in

illustrating and explaining the behavior of the two image-processing programs.

The processImg method

The programs named ImgMod12 and ImgMod24, (and all image-processing programs that are

capable of being driven by ImgMod02a), must implement the interface named ImgIntfc02. That

interface declares a single method named processImg, which must be defined by all

implementing classes.

When the user runs the program named ImgMod02a, that program instantiates an object of the

image-processing program class and invokes the processImg method on that object.

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/
http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest

A three-dimensional array containing the pixel data for the image is passed to the processImg

method. The processImg method returns a three-dimensional array containing the pixel data for

a processed version of the original image.

A before and after display

When the processImg method returns, the driver program named ImgMod02a causes the

original image and the processed image to be displayed in a frame with the original image above

the processed image as shown earlier in Figure 1.

Usage information for ImgMod12 and ImgMod24

To use the program named ImgMod02a to drive the program named ImgMod12, enter the

following at the command line:

java ImgMod02a ImgMod12 ImagePathAndFileName

To use the program named ImgMod02a to drive the program named ImgMod24, enter the

following at the command line:

java ImgMod02a ImgMod24 ImagePathAndFileName

The image file

The image file can be a gif file or a jpg file. Other file types may be compatible as well. If the

program is unable to load the image file within ten seconds, it will abort with an error message.

(You should be able to right-click on the image in Figure 16 to download and

save the image locally. Then you should be able to replicate the output produced

in Figure 1 by running the program named ImgMod24 and specifying 10

convolutions to process that image.)

Image display format

When the program is started, the original image and the processed image for the default

processing parameters are displayed in a frame with the original image above the processed

image as shown in Figure 1.

A Replot button appears at the bottom of the frame. If the user clicks the Replot button, the

processImg method is rerun, the image is reprocessed, and the new version of the processed

image replaces the old version in the display.

Input to the image-processing program

The image-processing programs named ImgMod12 and ImgMod24 provide a GUI for user

input. A sample of the user input panel for ImgMod24 is shown in Figure 2. A sample of the

input panel for ImgMod12 is shown in Figure 13. This makes it possible for the user to provide

different input values each time the image-processing method is rerun. To rerun the image-

processing method, type the new value into the text field and press the Replot button.

Discussion and Sample Code

Before getting into the details of the image-processing programs, I am going to briefly cover the

two programs named ImgMaker01 and ImgMaker02. These two programs are utility programs

that I wrote to produce special jpg image files. I will use those files to illustrate certain key

aspects of the two image-processing programs.

The program named ImgMaker01

The program named ImgMaker01 is shown in Listing 20. The purpose of this program is to

write an output jpg file named junk.jpg containing a white square centered in a square black

image as shown in Figure 3.

Figure 3

The size of the square and the image

The length of the sides of the image and the length of the sides of the white square are provided

by the user as command line parameters. If the user doesn't provide these values, the default size

of the image is 31 pixels on each side and the default size of the white square is 9 pixels on each

side.

Usage information

To run this program, enter the following command at the command-line prompt

java ImageMaker01 ImageSize SquareSize

where:

 ImageSize is the number of pixels on the side of the square image.

 SquareSize is the number of pixels on the side of the white square centered in the image.

Color values

The red, green, and blue values of the pixels in the white square are all 255.

The value of the alpha byte for all pixels is set to 255. (See later note regarding the writing of the

jpg file.)

All red, green, and blue pixel values outside the white square are zero.

(Note that when these values are encoded into the jpg file and later read into

another program, some of the values may be found to exhibit small errors.

Apparently this is the result of encoding and later decoding the data in the jpg

file.)

The alpha byte

This program cannot handle alpha bytes with different values when writing the file. Rather, the

program writes the three color bytes into the output file, apparently setting all of the alpha bytes

to 255.

References

This file writing capability is based on information obtained from the following websites:

 https://jaistuff.dev.java.net/data.html

 https://jaistuff.dev.java.net/Code/data/CreateRGBImage.java

Program code

The program contains two static methods that:

 Generate the pixel values

 Encode those pixel values into the output jpg file named junk.jpg

The names of the two methods are:

 createThreeDImage

 writeImageFile

The createThreeDImage method

The code in this method is relatively straightforward and shouldn't require much of an

explanation.

The method stores the pixel data for the white square into a 3D array of type:

int[row][column][depth].

The first two dimensions of the array correspond to the rows and columns of pixels in the image.

The third dimension always has a value of 4 and contains the following information by index

value:

https://jaistuff.dev.java.net/data.html
https://jaistuff.dev.java.net/Code/data/CreateRGBImage.java

 0 alpha value (not set within the program)

 1 red value

 2 green value

 3 blue value

Note that these values are stored as type int rather than type unsigned byte which is the format

of pixel data in an image. The values are converted to type unsigned byte during the writing of

the jpg file.

The writeImage method

The code in the second method is not straightforward at all. However since the purpose of this

lesson is to concentrate on processing image files rather than writing image files, I am simply

going to refer you to the two URLs listed above for an explanation of that code.

The program was tested using SDK 1.4.2 under WinXP.

The program named ImgMaker02

The program named ImgMaker02 is shown in Listing 21. The purpose of this program is to

write an output jpg file named junk.jpg containing a single white pixel centered in a square

black image as shown in figure 4. Images like this will be used for impulse testing the two

image-processing programs to be discussed later in this lesson. (Depending on your display zoom

factor, the white dot in the center of the black square in Figure 4 may be difficult to see.)

Figure 4

This program uses the same method for creating the jpg file that was discussed with regard to the

program named ImgMaker01.

Furthermore, the data-generation portion of this program is even simpler than the data-generation

portion of the program named ImgMod01. Therefore, I won't discuss this program further other

than to tell you that you can run the program by entering the following at the command-line

prompt

java ImageMaker02 ImageSize

where:

 ImageSize is the number of pixels on the side of the square image.

The program named ImgMod24

That brings us to the first of the two image-processing programs that I will explain in this lesson.

This program is named ImgMod24. Before getting into the details of this program, however, I

want to explain certain aspects of convolution.

Convolution is a linear process

I explained in the lesson titled Convolution and Frequency Filtering in Java that convolution is a

linear process. Among other things, this means that superposition holds. It is possible to reverse

the order of certain operations without changing the overall results.

A convolution example

For example, assume that I have a time series that contains high-frequency components that I

would like to suppress. I can accomplish that by convolving the time series with a low-pass

convolution filter that will suppress the high-frequency components.

Suppose that after applying the convolution operator once to the time series, I conclude that there

is still too much energy in the high-frequency area. There is nothing to stop me from simply

applying the low-pass convolution filter again to further suppress the high-frequency

components.

Now suppose that I know in advance that one pass of the convolution filter won't do the job and I

would like to create a different convolution filter that will do the job in a single pass. One way to

do this is to convolve the convolution filter with itself to produce an output that is a new

convolution filter. I can then apply this new convolution filter to the time series attaining

acceptable high-frequency suppression with a single pass. In fact, the results will be identical to

the results obtained by applying the original convolution filter twice.

Which approach would be preferable?

Both approaches will provide the same results. I can either apply the convolution operator to the

time series twice in succession, or I can apply the convolution operator to itself and convolve the

output from that convolution process with the time series once.

Therefore, my evaluation as to which approach is best must be based on something other than the

frequency content of the time series following the application of the convolution filter.

Required computing resource as an evaluation criteria

One evaluation criteria might be the amount of computing resource that is required to accomplish

each approach.

To follow up on the issue of required computing resource, assume that I have two convolution

filters. The first is a three-point filter having the following coefficient values:

1, 1, 1

http://cnx.org/content/m49812/latest/?collection=col11642/latest

The second is a five-point filter having the following coefficient values:

1, 2, 3, 2, 1

Which of these two convolution filters would require the greatest computing resource to apply?

The answer is simple. The second filter would require the greatest computing resource for two

reasons:

 The second filter has more coefficients and therefore requires more computations.

 The second filter requires multiplication by values other than unity.

The cost of multiplication

With some systems, the second reason is much more important than the first reason. Although

the computation of a convolution output value always requires computing the sum of the

products of the filter coefficient values and the data values, when all of the filter values are 1, the

multiplication step can be skipped.

On many systems, multiplication is very expensive in terms of computer resources. Therefore,

the requirement to do multiplication can be much more significant in terms of required computer

resources than the number of points in the convolution filter.

Convolve the first filter with itself

Now, take out a piece of paper and convolve the first filter given above with itself. What did you

get? If I did it correctly, I got a result that is the second convolution filter given above.

Therefore, convolving the time series with the first filter twice in succession will produce the

same result as convolving the time series with the second filter once.

Might be more efficient

Because all of the coefficients in the first filter have a value of 1, you should be able to write a

special convolution algorithm that doesn't do any multiplication.

(That isn't possible with the second filter because it contains values other than 1.)

As a result, you may be able to write an algorithm that will convolve the time series with the first

filter twice in succession and still require less computing resource than the algorithm to convolve

the time series with the second filter only once.

Now convolve one more time

Now convolve the second filter with itself. If I did the arithmetic correctly, this results in a filter

containing the following nine coefficient values:

1, 4, 10, 16, 19, 16, 10, 4, 1

Convolving this filter with the time series once would produce the same result that would be

produced by convolving the first filter with the time series four times in succession. However,

that isn't my main point in having you do this.

Approaches a Gaussian

If you plot this new filter in Cartesian coordinates, you might notice that the shape of the curve is

tending towards a typical bell shaped or Gaussian curve.

Without getting into the technical details, a convolution operator having a Gaussian shape has

some very interesting properties in digital signal processing (DSP), so that is something that we

might be interested in.

If we begin with a flat convolution filter and successively convolve it with itself, the resulting

convolution filter will more and more closely approximate a Gaussian shape.

Similarly, because the convolution process is a linear process and superposition holds, if we

successively convolve a time series with a flat convolution filter, the ultimate result will be the

same as convolving that time series with a convolution filter having a Gaussian shape. Unlike

with the actual Gaussian filter, however, we can write a convolution algorithm for a flat filter

that doesn't require any multiplications (except for possibly scaling or normalizing the final

result). Convolving multiple times in succession with a flat filter may require less computer

resource than convolving with a Gaussian filter only once.

What about a 3D Gaussian filter?

I briefly described the 3D image convolution process in an earlier section. I will get into the

detailed code that accomplishes that process later. Right now, I want to show you what happens

when I successively convolve an image with a flat convolution filter consisting of an array of

nine points all having the same value.

The top black image in Figure 5 contains a single white pixel, containing equal contributions of

red, green, and blue. The color values for each of the three colors for this pixel are 255. The

color values for all of the other pixels in the image are 0. Thus, this is what we would refer to as

an impulse in DSP involving sampled time series.

Figure 5

The result of multiple successive convolutions

The bottom image in Figure 5 shows the result of convolving the top image ten times in

succession with the nine-point flat convolution filter whose values are shown in Figure 6. As you

can see, the white color belonging to the single pixel in the center gets spread into the adjacent

pixels. Not only did spreading occur, but the output is brightest in the center. The white color

gradually progresses through grey to black as the distance from the center increases.

1 1 1

1 1 1

1 1 1

Figure 6

The output in numeric terms

Figure 7 shows the actual values that are displayed by the bottom image in Figure 5. (These are

the red color values only, but all three color values are the same for every pixel.) The values

shown are the only non-zero values in the image. All the other pixel values in the image have a

value of 0 and appear black in the bottom image of Figure 5.

 1 2 4 4 4 2 1

 1 3 7 10 14 15 14 10 7 3 1

 1 4 10 19 28 36 39 36 28 19 10 4 1

 3 10 22 39 58 73 78 73 58 39 22 10 3

 1 7 9 39 68 99 123 132 123 99 68 39 19 7 1

 2 10 28 58 99 143 178 191 178 143 99 58 28 10 2

4 14 36 73 123 178 220 237 220 178 123 73 36 14 4

4 15 39 78 132 191 237 255 237 191 132 78 39 15 4

4 14 36 73 123 178 220 237 220 178 123 73 36 14 4

 2 10 28 58 99 143 178 191 178 143 99 58 28 10 2

 1 7 19 39 68 99 123 132 123 99 68 39 19 7 1

 3 10 22 39 58 73 78 73 58 39 22 10 3

 1 4 10 19 28 36 39 36 28 19 10 4 1

 1 3 7 10 14 15 14 10 7 3 1

 1 2 4 4 4 2 1

Figure 7

A Gaussian shape with a round footprint

The value of 255 shown at the center of Figure 7 represents the brightest point in the center of

the bottom image of Figure 5. As you move away from that value at the center, the other values

shown in Figure 7 represent the grey values shown in Figure 5. Ultimately the black, or zero

values occur, but they are not shown in Figure 7.

(I promised earlier that I would explain what I meant by a Gaussian shape with a

round footprint. Figure 7 illustrates a Gaussian shape with a nearly round

footprint. If you were to use clay and build a 3D model of the values shown in

Figure 7, it would be nearly round on the bottom and would look like a church

bell with a nearly Gaussian shape.)

Plot some points on an intersection

If you draw a line through the center point in Figure 7 and plot the values intersected by that line

in Cartesian coordinates, you will see that the values describe a bell shape or Gaussian curve.

Symmetry

If you divide Figure 7 into four quadrants centered on the value of 255 at the center, you will see

that the other values exhibit symmetry about each of the axes.

What does this mean?

This means that if you convolve this nine-point flat convolution filter with each of the values of

the three color surfaces ten times in succession, every pixel will be modified in the manner

shown in the bottom image in Figure 5. Each pixel will maintain the correct relative height and

will be spread into the adjacent pixels in the manner shown in Figure 5. The resulting picture will

be the sum of those modified pixels.

Back to the stick man

This should explain why the stick man in the bottom image of Figure 1 appears softer and fuzzier

than the stick man in the top image of Figure 1. In this case, the outline of the original stick man

results from a series of pixels that have all zero color values. Therefore, those pixels appear to be

black.

The white areas in Figure 1 represent pixels whose red, green, and blue color values are all 255.

As a result, those pixels appear to be white.

Each of the pixels at the transition between white and black in the bottom image of Figure 1 was

modified in a manner similar to the bottom image in Figure 5. This results in the apparent

fuzziness of the stick man in Figure 1.

Explanation from a DSP viewpoint

Another explanation, from a DSP viewpoint, is that rapid transitions from black to white require

color surfaces containing strong high-frequency components. The convolution process

implemented by this program suppresses high-frequency components from the color surfaces.

Therefore, rapid transitions from black to white are also eliminated.

Because the black areas that represent the stick man are so narrow, elimination of the rapid

transitions from black to white tend to turn the black stick man into a grey stick man. There

simply isn't enough space to go from white to black and back to white in the width of the stick

man's body.

This is most apparent by comparing the stick man's face with the remainder of his body. The

width of the black area representing the face is wider than the other parts of his body. Therefore,

the face ended up blacker than the rest of the body.

Now for some code - ImgMod24

The program named ImgMod24 is designed to allow a user to apply the flat nine-point

convolution filter shown in Figure 6 repetitively to an input image. The number of times the

convolution filter is applied is specified by the user via the control panel shown in Figure 2.

The user can experiment by entering different values into the text field in Figure 2 and then

pressing the Replot button in Figure 1. Each time the Replot button is pressed, the old

processing results are cleared out and the image is processed and displayed again according to

the new value provided by the user.

The processImg method

The image-processing program must implement the interface named ImgIntfc02. A listing of

that interface was provided in the earlier lesson titled Processing Image Pixels using Java,

Getting Started. That interface declares a single method with the following signature:

int[][][] processImg(int[][][] threeDPix,

 int imgRows,

 int imgCols);

The first parameter is a reference to an incoming three-dimensional array of pixel data stored as

type int. The second and third parameters specify the number of rows and the number of

columns of pixels in the image.

It's best to make and modify a copy

Normally the processImg method should make a copy of the incoming array and modify the

copy rather than modifying the original. Then the method should return a reference to the

processed copy of the three-dimensional pixel array.

The program named ImgMod24

This program allows for multiple successive convolutions using a fixed 3x3 flat convolution

filter. The result approaches a Gaussian filter as more successive convolutions are performed.

The output is normalized

The program normalizes the output so that the largest color value in the output always matches

the largest color value in the input. This may or may not be desirable depending on the

circumstances.

http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest

Driven by ImgMod02a

This program is designed to be driven by the program named ImgMod02a. Enter the following

at the command line to run this program:

java ImgMod02a ImgMod24 ImagePathAndFileName

A low-pass filter

As mentioned above, this is a low-pass filter that suppresses high frequency components in color

surfaces described by an array of color values.

The algorithm

The program treats each color surface separately from the others. During each convolution pass,

the program adds all of the color values for each color surface within the area covered by the 3x3

filter. The sum of those values constitutes one value in the output color surface.

Then it moves to the next registration point and adds the pixel values then covered by the area.

This process is continued until all of the values in the color surface have been processed.

When a convolution pass is complete, all of the color values in the output surface are scaled so

that the peak color value in the output surface matches the peak color value in the input surface.

Special treatment at the edges

Each pixel belonging to the input color surface, except those at the outer edges of the surface, is

used as a registration point. The pixels around the outer edges are not used as registration points

because that would cause the area covered by the convolution filter to extend outside the input

surface. The result of ignoring the outer edges of the input surface is shown by the black frame in

the bottom image of Figure 1.

(If this were a production system, I would need to come up with a better way to

handle the pixels at the edges rather than to just ignore them.)

The visual effect

The visual effect of applying this filter to an image is to cause the image to go increasingly out of

focus as the number of convolutions is increased. The effect is most obvious with images that

have well-defined lines such as text characters. This is sometimes referred to as a blurring filter.

Why use a blurring filter?

One possible use of a blurring filter such as this is to reduce the visibility of age lines and

wrinkles in a portrait of a human face, thus causing the person in the portrait to look somewhat

younger.

Transparency

The transparency or alpha value of each pixel is preserved intact. If you don't see what you

expect to see when you run this program with a particular image, it may be because your image

contains transparent areas. This will be evidenced by the yellow background color of the canvas

showing through the image.

Testing

This program was tested using SDK 1.4.2 and WinXP

The Graphical User Interface

The program provides the GUI control panel shown in Figure 2, which allows the user to enter a

new value to specify the number of times to apply the convolution filter. To use this feature,

simply type a new integer value into the text field and press the Replot button at the bottom of

the main display frame shown in Figure 1.

No need to press the Enter key

It isn't necessary to press the Enter key to type a new value into the text field, but doing so won't

cause any harm.

Entering a text string that cannot be converted to a value of type int will cause the program to

throw an exception.

Will discuss in fragments

I will break the program down and discuss it in fragments. A complete listing of the program is

provided in Listing 22 near the end of the lesson.

The beginning of the class definition, including the declaration of some instance variables is

shown in Listing 1.

class ImgMod24 extends Frame implements

 ImgIntfc02{

 int numberConvolutions;

 String inputData;//Obtained via the TextField

 TextField input;//User input field

Listing 1

As is the case with all classes that are intended to be run under control of the program named

ImgMod02a, this class implements the interface named ImgIntfc02. This in turn requires the

class to define the method named processImg, which will be discussed shortly.

The constructor

The constructor is shown in Listing 2. The only purpose of the constructor is to create the control

panel GUI shown in Figure 2. The code in the constructor is straightforward and should not

require further discussion.

 ImgMod24(){//constructor

 setLayout(new FlowLayout());

 Label instructions = new Label(

 "Number of convolutions/replot.");

 add(instructions);

 input = new TextField("1",5);

 add(input);

 setTitle("Copyright 2004, Baldwin");

 setBounds(400,0,200,100);

 setVisible(true);

 }//end constructor

Listing 2

The processImg method

The processImg method, which is declared in the interface named ImgInfc02, begins in Listing

3.

 public int[][][] processImg(

 int[][][] threeDPix,

 int imgRows,

 int imgCols){

 System.out.println("\nWidth = " + imgCols);

 System.out.println("Height = " + imgRows);

 //Get numberConvolutions value from the

 // TextField

 numberConvolutions = Integer.parseInt(

 input.getText());

Listing 3

The processImg method applies the convolution filter to the incoming 3D array of pixel data and

returns a normalized filtered 3D array of pixel data. The output array is normalized such that the

peak output color value matches the peak input color value.

The code in Listing 3 is straightforward and shouldn't require further discussion.

A working copy of the 3D data

The code in Listing 4 makes a working copy of the incoming 3D array to avoid making

permanent changes to the original image data. It also gets and saves the peak input color value

for use in normalization later on.

 int inputPeak = 0;

 int colorValue = 0;

 int[][][] working3D =

 new int[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 working3D[row][col][0] =

 threeDPix[row][col][0];

 colorValue = threeDPix[row][col][1];

 working3D[row][col][1] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 colorValue = threeDPix[row][col][2];

 working3D[row][col][2] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 colorValue = threeDPix[row][col][3];

 working3D[row][col][3] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 }//end inner loop

 }//end outer loop

 System.out.println(

 "inputPeak = " + inputPeak);

Listing 4

Miscellaneous preparation operations

The code in Listing 5 creates an empty output array of the same size as the incoming array. Then

it copies all of the alpha or transparency values from the input array to the output array. No

processing is performed on the alpha values.

 //Create an empty output array of the same

 // size as the incoming array.

 int[][][] output =

 new int[imgRows][imgCols][4];

 //Copy all alpha values from input to output.

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 output[row][col][0] =

 working3D[row][col][0];

 }//end inner loop

 }//end outer loop

Listing 5

The convolution operation

The convolution operation begins in Listing 6. This operation uses three nested for loops to treat

each pixel (other than those along the edges of the image) as a registration point, and to perform

the two-dimensional convolution using a shift-sum-scale approach. There is no multiplication

required between convolution operator values and surface values.

(This algorithm is somewhat different from and probably more efficient than the

algorithm used in the program named ImgMod12 to be discussed later in this

lesson. It is also simpler. However, this algorithm is also less flexible in terms of

the shapes of the convolution filters that can be applied.)

 //Perform the convolution one or more times

 // in succession

 for(int cnt = 0;

 cnt < numberConvolutions;cnt++){

 try{

 //Iterate on each pixel as a registration

 // point.

 for(int row = 0 + 1;row < imgRows - 2;

 row++){

 for(int col = 0 + 1;

 col < imgCols - 2;col++){

Listing 6

The three nested for loops

The convolution operation uses an outer loop to control the number of times the convolution

operator is successively applied to the image.

The two inner loops iterate on the number of rows and the number of columns contained in the

image to perform one convolution pass.

Listing 6 shows the setup code for the three nested for loops.

Calculate the red sum

Figure 7 shows the calculation that is performed to calculate the red output value for each input

registration point during one convolution pass. Once again, note that there are no multiplications

required. This is because the values of all the convolution operator coefficients are 1.

 int redSum =

 working3D[row - 1][col - 1][1] +

 working3D[row - 1][col - 0][1] +

 working3D[row - 1][col + 1][1] +

 working3D[row - 0][col - 1][1] +

 working3D[row - 0][col - 0][1] +

 working3D[row - 0][col + 1][1] +

 working3D[row + 1][col - 1][1] +

 working3D[row + 1][col - 0][1] +

 working3D[row + 1][col + 1][1];

Listing 7

If you examine Listing 7 carefully, you will see that the calculation simply involves adding the

nine input values centered on the registration point to produce the output value for that

registration point.

Calculate the green and blue sums

Listing 22 near the end of the lesson shows two additional blocks of code, almost identical to the

code in Listing 7. These blocks of code are used to calculate the green and blue sums. Because of

the similarity of the code, I didn't include that code in this discussion of code fragments.

Store the sums in the output image

The code in Listing 8 stores the red, green, and blue sums in the output image for each

registration point.

 output[row][col][1] = redSum;

 output[row][col][2] = greenSum;

 output[row][col][3] = blueSum;

 }//end for loop on col

 }//end for loop on row

 }catch(Exception e){

 e.printStackTrace();

 }//end catch

Listing 8

Listing 8 also shows the ends of the two inner for loops that iterate on rows and columns.

Get output peak value for normalization

The code in listing 9 scans the red, green, and blue color values in the output image to get and

save the peak color value. This value will be used to normalize the output image to the same

peak value as the input image.

 int outputPeak = 0;

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 if(output[row][col][1] > outputPeak){

 outputPeak = output[row][col][1];

 }//end if

 if(output[row][col][2] > outputPeak){

 outputPeak = output[row][col][2];

 }//end if

 if(output[row][col][3] > outputPeak){

 outputPeak = output[row][col][3];

 }//end if

 }//end inner loop

 }//end outer loop

 //System.out.println(

 // "outputPeak = " + outputPeak);

Listing 9

Normalize the peak value

The code in Listing 10 uses the two peak values that were saved earlier to scale all of the values

in the output image to make the peak color value in the output image equal to the peak color

value in the input image.

 double outputScale =

 ((double)inputPeak)/outputPeak;

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 output[row][col][1] =

 (int)(output[row][col][1]*

 outputScale);

 output[row][col][2] =

 (int)(output[row][col][2]*

 outputScale);

 output[row][col][3] =

 (int)(output[row][col][3]*

 outputScale);

 }//end inner loop

 }//end outer loop

Listing 10

Reprocess or return?

At this point, a decision must be made to either loop back and apply the convolution filter again

to the previously processed data, or to return the processed data to the program named

ImgMod02a.

Copy output data to input array

In view of the possibility that it may be necessary to perform another convolution pass on the

processed data, the code in Listing 11 copies the processed normalized output color data into the

input working array. Then control returns to the top of the for loop where a decision is made to

either process the data again, or to break out of the loop and return to ImgMod02a.

(An improvement in structure could be made at this point to prevent the

unnecessary copying of the data at the end of the final convolution pass.)

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 working3D[row][col][1] =

 output[row][col][1];

 working3D[row][col][2] =

 output[row][col][2];

 working3D[row][col][3] =

 output[row][col][3];

 }//end inner loop

 }//end outer loop

 }//end for loop on numberConvolutions

Listing 11

Return the processed image

Listing 12 shows the code that is executed when all the processing has been completed and it is

time to return the processed image to the program named ImgMod02a for display.

 System.out.println("Processing Done");

 return output;

 }//end processImg method

}//end class ImgMod24

Listing 12

Listing 12 also shows the end of the processImg method and the end of the ImgMod24 class.

Some more image-processing examples

Before we finish our discussion of this program, let's look at a few more image-processing

examples.

Figure 8 shows the result of making ten convolution passes on an image containing a white

square. This example clearly illustrates the manner in which this processing technique softens the

hard transitions between colors.

Figure 8 with

10 convolution

passes

Edge detection

In a future lesson I will show you another convolution technique that emphases rather than

softens the edges of transitions between colors. Convolution is used in both cases. The only

difference is the convolution operator that is used.

A natural example

Up to this point, all of the results that I have shown you have been based on artificial images, so

to speak. They were not images taken from nature. Figure 9 shows the result of making ten

convolution passes on an image taken from a digital photograph at an aquarium.

Figure 9 with 10 convolutions

Note that Figure 9 is not intended to improve the image. It is intended simply to show you the

result of convolution with this particular operator.

Application to text characters

The application of a smoothing operator is most apparent for situations where there are well-

defined lines, such as in text. This is illustrated in Figure 10, which shows the result of making

only one convolution pass with the flat 3x3 operator on an image containing text.

Figure 10 with one convolution of 9 points

As you can see, this causes the transitions between colors to become less well defined. This has

the effect of blurring the characters and the lines.

Additional blurring

Figure 11 shows the result of making ten convolution passes on the same image. As you can see,

this caused the text to become almost totally unreadable.

Figure 11 with 10 convolutions

A different approach

Next, I am going to discuss the program named ImgMod12, which uses a completely different

approach to the use of convolution for smoothing. After discussing that program, I will show you

some additional image-processing examples and use them to compare the two approaches.

One common situation

There is one situation in which the two approaches are the same. Making a single convolution

pass with ImageMod24 is equivalent to processing with ImgMod12 using a 3x3 convolution

operator. This is the situation illustrated in Figure 10.

Making ten convolution passes using ImgMod24 is roughly equivalent to using a Gaussian filter

with a nearly round footprint about fifteen pixels in diameter (see Figure 7).

The program named ImgMod12

The program named ImgMod12 applies a flat convolution filter to an input image. The user is

allowed to control the size and to some extent, the 2D shape of the filter, but it is always flat

regardless of user input. Because of the additional requirement for control code to accommodate

the user input, the code is more complex than the code in the previously-discussed program

named ImgMod24.

Sample output from ImgMod12

Figure 12 shows the output from this program for the one case where the behavior of this

program matches the behavior of the program named ImgMod24. This is the case where both

programs apply a square 3x3 flat filter. This is the startup case for ImgMod24 and is one of the

selectable cases for ImgMod12.

Figure 12

The bottom image in Figure 12 should compare favorably with the bottom image in Figure 10,

which was produced by the program named ImgMod24.

The interactive control panel for ImgMod12

Figure 13 shows the interactive control panel for ImgMod12, which allows the user to specify

the area in sample points for the flat convolution filter that is to be applied to the input image.

Figure 13

Runs under control of ImgMod02a

The program named ImgMod12 is designed to be driven by the program named ImgMod02a.

Enter the following at the command line prompt to run this program:

java ImgMod02a ImgMod12 ImageFileName

This program illustrates the use of area convolution filtering to blur or soften an image.

Display format

The program displays two frames on the screen. The large frame on the left shows the original

image at the top and the filtered image at the bottom. That frame has a button labeled Replot at

the very bottom.

The small frame on the right is the interactive control pane shown in Figure 13. It contains a

TextField for user input.

Interactive control panel

When the program starts running, this TextField displays the size of the default convolution area

in pixels. To modify the convolution area, type an integer value into the TextField and click the

Replot button. The new filter will be applied to the image and the filtered image will be

displayed.

Shape and size of convolution filters

The program supports non-square convolution area values of 1, 2, 3, 4, 6, and 8 pixels. The

shape of the convolution area is shown as a grid of X characters on the screen. Area values of 0,

5, and 7 are not supported.

In addition, the program supports all area values that are perfect squares beginning with an area

value of 4 pixels. For area values greater than 9, the value entered by the user is automatically

rounded to the nearest perfect square before processing takes place. For example, if the user

enters 10, the actual area used for convolution will be a square with 3 pixels on each side. If the

user enters 15, the area used for convolution will be a square with 4 pixels on each side. The

convolution operator is a box with each coefficient having a value of 1. (See discussion of

normalization later.)

Mechanics of convolution

This is a low-pass filter that suppresses high frequency changes in color values. The red, green,

and blue color surfaces are treated separately. The program adds all of the pixel values for each

color within the area covered by the filter and uses that value to produce an output point. Then

the program moves to the next registration point and adds the pixel values that are contained in

the area there.

Special treatment at the edges

Every pixel, except those in the outer edges of the image, is used as a registration point.

(The pixels around the outer edges are not used as registration points because

that would cause the convolution area to extend outside the color surface)

Normalization

Once the convolution process is finished, the output data is normalized such that the peak color

value in the output matches the peak color value in the input. This may, or may not be

appropriate depending on the circumstances. However, it does preserve the dynamic range of the

display.

The visual effect

The visual effect of applying this filter is to cause the image to go increasingly out of focus as

the size of the area is increased. The effect is most obvious with images that have well defined

lines such as text characters.

Transparency is preserved

The transparency or alpha value of each pixel is preserved. If you don't see what you expect to

see when you run this program with a particular image, it may be because your image contains

transparent areas. This will be evidenced by the yellow background color of the canvas showing

through the image.

Testing

The program was tested using SDK 1.4.2 and WinXP.

Will discuss in fragments

I will break the program named ImgMod12 down and discuss it in fragments. Listing 13 shows

the beginning of the class and the constructor.

class ImgMod12 extends Frame implements

 ImgIntfc02{

 int area;//The area value in pixels

 String inputData;//Obtained via the TextField

 TextField input;//User input field

 ImgMod12(){//constructor

 setLayout(new FlowLayout());

 Label instructions = new Label(

 "Type an area value and replot.");

 add(instructions);

 input = new TextField("2",5);

 add(input);

 setTitle("Copyright 2004, Baldwin");

 setBounds(400,0,200,100);

 setVisible(true);

 }//end constructor

Listing 13

Once again, note that the class implements the interface named ImgIntfc02 requiring the class to

define the method named processImg.

The constructor simply creates the user input panel shown in Figure 13.

The processImg method

The processImg method begins in Listing 14. This method applies the convolution filter to the

incoming 3D array of pixel data and returns a filtered 3D array of pixel data.

 public int[][][] processImg(

 int[][][] threeDPix,

 int imgRows,

 int imgCols){

 System.out.println("\nWidth = " + imgCols);

 System.out.println("Height = " + imgRows);

 //Get area value from the TextField

 area = Integer.parseInt(input.getText());

 //Create an empty output array of the same

 // size as the incoming array.

 int[][][] output =

 new int[imgRows][imgCols][4];

 //Make a working copy of the 3D array to

 // avoid making permanent changes to the

 // original image data. Get and save the

 // maximum value along the way.

 int inputPeak = 0;

 int colorValue = 0;

 int[][][] working3D =

 new int[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 working3D[row][col][0] =

 threeDPix[row][col][0];

 colorValue = threeDPix[row][col][1];

 working3D[row][col][1] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 colorValue = threeDPix[row][col][2];

 working3D[row][col][2] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 colorValue = threeDPix[row][col][3];

 working3D[row][col][3] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 }//end inner loop

 }//end outer loop

 System.out.println(

 "inputPeak = " + inputPeak);

 //Copy all alpha values from input to output.

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 output[row][col][0] =

 working3D[row][col][0];

 }//end inner loop

 }//end outer loop

Listing 14

The code in Listing 14 is very similar to the code discussed earlier for the program named

ImgMod24, so there should be no need to repeat that discussion here.

Accumulators

Listing 15 declares three variables that are used to accumulate the products of the pixel values

and the convolution filter coefficients

(Note however that because the values of all of the convolution filter coefficients

are 1, no actual multiplication is required. The program would probably run

much more slowly if it were actually necessary to multiply the pixel values by the

filter coefficients.)

 int redSum = 0;

 int greenSum = 0;

 int blueSum = 0;

Listing 15

Control variables

Listing 16 declares a large number of variables that are used for control purposes while

performing the convolution operation.

 int rowNo = 0;

 int colNo = 0;

 int row = 0;

 int col = 0;

 int firstRow = 0;

 int lastRow = 0;

 int firstCol = 0;

 int lastCol = 0;

 int minusRow = 0;

 int plusRow = 0;

 int minusCol = 0;

 int plusCol = 0;

Listing 16

Setting the control variables

Listing 17 contains a switch statement that is used to set the control variables listed above for

area values of 1, 2, 3, 4, 6, and 8 on an individual area basis. Area values of 5 and 7 are not

supported. Area values of 9 and greater default to the nearest perfect square, such as 9, 16, 25,

36, etc.

 switch(area){

 case 0:

 System.out.println(

 "Area value 0 not supported");

 break;

 case 1://A single pixel reproduces image

 firstRow = 0;

 lastRow = imgRows;

 firstCol = 0;

 lastCol = imgCols;

 minusRow = 0;

 plusRow = 0;

 minusCol = 0;

 plusCol = 0;

 break;

 case 2://Two pixels in a row

 firstRow = 0;

 lastRow = imgRows;

 firstCol = 1;

 lastCol = imgCols;

 minusRow = 0;

 plusRow = 0;

 minusCol = 1;

 plusCol = 0;

 break;

 case 3://Three pixels in a row

 firstRow = 0;

 lastRow = imgRows;

 firstCol = 1;

 lastCol = imgCols - 1;

 minusRow = 0;

 plusRow = 0;

 minusCol = 1;

 plusCol = 1;

 break;

 case 4://Four pixels in a square

 firstRow = 1;

 lastRow = imgRows;

 firstCol = 1;

 lastCol = imgCols;

 minusRow = 1;

 plusRow = 0;

 minusCol = 1;

 plusCol = 0;

 break;

 case 5:

 System.out.println(

 "Area value 5 not supported");

 break;

 case 6://Two rows of 3 pixels

 firstRow = 1;

 lastRow = imgRows;

 firstCol = 1;

 lastCol = imgCols - 1;

 minusRow = 1;

 plusRow = 0;

 minusCol = 1;

 plusCol = 1;

 break;

 case 7:

 System.out.println(

 "Area value 7 not supported");

 break;

 case 8://Two rows of 4

 firstRow = 1;

 lastRow = imgRows;

 firstCol = 2;

 lastCol = imgCols - 1;

 minusRow = 1;

 plusRow = 0;

 minusCol = 2;

 plusCol = 1;

 break;

 //Default to nearest perfect square for

 // area values greater than 8.

 default:

 //Get the side of the square area,

 // rounded to the nearest square.

 double dSide = Math.sqrt(area);

 int side = (int)Math.round(dSide);

 //Set the area value to the nearest

 // perfect square. This is necessary

 // because it is used to scale the

 // accumulated values later.

 area = side*side;

 //Because a square area with an even

 // number of pixels on a side doesn't

 // have a pixel at the center, it must

 // be treated differently from a square

 // area with an odd number of pixels on a

 // side. For the even case, the area

 // above and to the left of the

 // registration point is slightly greater

 // than the area below and to the right.

 if(side%2 == 0){//side is even

 firstRow = side/2;

 lastRow = imgRows - side/2 + 1;

 firstCol = side/2;

 lastCol = imgCols - side/2 + 1;

 minusRow = side/2;

 plusRow = side/2 - 1;

 minusCol = side/2;

 plusCol = side/2 -1;

 }else{//side is odd

 firstRow = side/2;

 lastRow = imgRows - side/2;

 firstCol = side/2;

 lastCol = imgCols - side/2;

 minusRow = side/2;

 plusRow = side/2;

 minusCol = side/2;

 plusCol = side/2;

 }//end else

 }//end switch statement

Listing 17

The comments in Listing 17 should be sufficient to make the code self-explanatory.

Perform the convolution

The code in Listing 18 uses nested for loops to treat each pixel (other than those along the edges

of the image) as registration points and to perform the two-dimensional convolution based on

those registration points.

 try{

 //First iterate on each pixel as a

 // registration point.

 for(row = firstRow;row < lastRow;row++){

 for(col = firstCol;col < lastCol;col++){

 //Now use the registration point as a

 // base and iterate on the pixels

 // contained within the area covered by

 // the convolution filter. Display a

 // grid of X characters on the screen

 // showing the shape of the area

 // covered by the convolution filter.

 // Display the grid only once while

 // processing the first registration

 // point.

 for(rowNo = row - minusRow;

 rowNo <= row + plusRow;rowNo++){

 //Start a new line in the grid of X

 // characters.

 if((row == firstRow)

 && (col == firstCol)){

 System.out.println();

 }//end if

 for(colNo = col - minusCol;

 colNo <= col + plusCol;colNo++){

 //Display the next X in the grid of

 // X characters.

 if((row == firstRow)

 && (col == firstCol)){

 System.out.print("X");

 }//end if

 //Accumulate the pixel values

 // multiplied by the coefficient

 // values in the convolution

 // filter. Note that all

 // coefficients have a value of 1.

 // The accumulated value will later

 // be divided by the area, causing

 // the effective values of the

 // coefficients to be the

 // reciprocal of the area.

 redSum +=

 working3D[rowNo][colNo][1];

 greenSum +=

 working3D[rowNo][colNo][2];

 blueSum +=

 working3D[rowNo][colNo][3];

 }//end for loop on y

 }//end for loop on x

 //Store the accumlator values in the

 // output array.

 output[row][col][1] = redSum;

 output[row][col][2] = greenSum;

 output[row][col][3] = blueSum;

 //Clear the accumulators in preparation

 // for processing the next registration

 // point.

 redSum = 0;

 greenSum = 0;

 blueSum = 0;

 }//end for loop on col

 }//end for loop on row

 }catch(Exception e){

 e.printStackTrace();

 }//end catch

Listing 18

As you can see, the code in Listing 18 is much more complex than the code that performs the

convolution for the program named ImgMod24. This increased complexity results from the fact

that this program is much more flexible in terms of the size and shape of the convolution filter.

Normalize the data and return

The code in Listing 19 normalizes the output data to cause the peak color value in the output to

match the peak color value in the input. Then the method returns the output data to the program

named ImgMod02a for display.

 //Normalize output peak value to match

 // input peak value.

 //First get output peak value

 int outputPeak = 0;

 for(row = 0;row < imgRows;row++){

 for(col = 0;col < imgCols;col++){

 if(output[row][col][1] > outputPeak){

 outputPeak = output[row][col][1];

 }//end if

 if(output[row][col][2] > outputPeak){

 outputPeak = output[row][col][2];

 }//end if

 if(output[row][col][3] > outputPeak){

 outputPeak = output[row][col][3];

 }//end if

 }//end inner loop

 }//end outer loop

 //Normalize to peak value

 double outputScale =

 ((double)inputPeak)/outputPeak;

 for(row = 0;row < imgRows;row++){

 for(col = 0;col < imgCols;col++){

 output[row][col][1] =

 (int)(output[row][col][1]*

 outputScale);

 output[row][col][2] =

 (int)(output[row][col][2]*

 outputScale);

 output[row][col][3] =

 (int)(output[row][col][3]*

 outputScale);

 }//end inner loop

 }//end outer loop

 //Return a reference to the array containing

 // the filtered pixels.

 return output;

 }//end processImg method

}//end class ImgMod12

Listing 19

The code in Listing 19 is very similar to the corresponding code discussed earlier for the

program named ImgMod24. Therefore, I won't discuss it further here.

Note that Listing 19 also signals the end of the processImg method and the end of the

ImgMod12 class.

Some more examples from ImgMod12

Let's look at the output from some more examples. First consider the output shown in Figure 14

and compare it with the output from the program named ImgMod24 shown earlier in Figure 5.

Figure 14

These two figures compare the impulse responses of the two convolution processes for

convolution filters having approximately the same area.

The areas of the two filters

If you consider the footprint of the Gaussian filter shown in Figure 7 to be a perfect circle, the

area of the circle is approximately 176 pixels. The output shown in Figure 14 was produced by

specifying a 2D convolution area for ImgMod12 to be 169 pixels. In particular, this is a square

flat convolution filter that is 13 pixels on each side.

Contribution from pixels some distance from the center

For the Gaussian filter, the output produced for each registration point consists of the value at the

registration point plus a decreasing contribution from pixels located within the nearly round

footprint but at greater distances from the registration point.

For the flat filter used in ImgMod12, the output value for a given registration point consists of

equal contributions of all the pixels contained within the rectangular or square footprint. Thus,

for footprints of approximately the same area, the flat filter used in ImgMod12 is a much harsher

filter than the filter in ImgMod24 that decays with distance from the center.

A much harsher filter

The fact that the filter in ImgMod12 is much harsher for the same footprint area can be

illustrated by comparing Figure 15 with Figure 9. Figure 9 was produced by ImgMod24 and

Figure 15 was produced by ImgMod12.

Figure 15

The total area encompassed by the footprints of the two filters was approximately the same (169

for ImgMod12 and 176 for ImgMod24). However, the blurring in Figure 15 was much more

substantial than in Figure 9.

Neither good nor bad

This is not intended to indicate that one approach is better than the other. It is simply intended to

show that the two approaches produce different results for the same total area encompassed

within the footprint of the convolution filter. If your needs are such that you would prefer that the

contribution of the pixels (to the output) decrease with distance from the registration point, then

the Gaussian approach is probably best. On the other hand, if you need an equal contribution

from all the pixels within the footprint, then the flat filter is probably best.

Interpretation of Results

The convolution process always produces an output sample as a weighted summation of input

samples. The shape of the convolution operator along with the values of the individual

coefficients in the convolution operator determine which input samples will be used to produce

the output sample, and how they will be weighted in the output. Different convolution operators

can produce decidedly different results.

A low-pass filter

In DSP terms, the convolution filters used in this lesson are what we would call low-pass filters.

That is, they suppress high-frequency components and preserve low-frequency components.

In order for an image to exhibit rapid changes in color, the color values in the image must

include high-frequency components. Suppressing those high-frequency components causes the

transitions between colors to be spread across more pixels, thus producing the softening or

blurring of the images that you have seen in the examples in this lesson.

In future lessons, I will show you what happens to your image when you use a convolution filter

that preserves high-frequency components and suppresses low-frequency components. In

general, this will result in sharpening the image, and in the extreme case, causing the edges

between color transitions to become very prominent.

Run the Program

I encourage you to copy, compile and run the following programs that are provided in this

lesson:

 ImgMaker01

 ImgMaker02

 ImgMod12

 ImgMod24

Experiment with them, making changes and observing the results of your changes.

(Remember, you will also need to copy the program named ImgMod02a and the

interface named ImgIntfc02 from the earlier lessons titled Processing Image

http://cnx.org/content/m49938/latest/?collection=col11642/latest

Pixels Using Java: Controlling Contrast and Brightness and Processing Image

Pixels using Java, Getting Started.)

Test images

To replicate the output images shown in this lesson, you will need to use the same images as

input. Some of those images can be created by running the programs named ImgMaker01 and

ImgMaker02.

The other images are provided below. Simply right-click on each of the images in Figures 16, 17,

and 18, and save them on your disk. Then use them as input to the programs named ImgMod12

and ImgMod24.

Figure 16

Figure 17

http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest

Figure 18

Modify a variety of images

If you search the Internet, you should be able to find lots of images that you can download and

experiment with. Just remember, as explained in the lesson titled Processing Image Pixels Using

Java: Controlling Contrast and Brightness, if you download a gif image, it will probably contain

a lot less color information than a comparable jpg image.

Have fun and learn

Above all, have fun and use these programs to learn as much as you can about manipulating

images by modifying image pixels using Java.

Summary

In this lesson, I showed you how to write programs that produce highly specialized jpg image

files containing images that are very useful for testing image-processing programs.

I also showed you two different ways to perform convolution on an image to provide varying

degrees of smoothing or blurring.

What's Next?

http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest

Future lessons will show you how to write image-processing programs that implement many

common special effects as well as a few that aren't so common. This will include programs to do

the following:

 Deal with the effects of noise in an image.

 Sharpen all or part of an image.

 Perform edge detection on an image.

 Morph one image into another image.

 Rotate an image.

 Change the size of an image.

 Create a kaleidoscope of an image.

 Create a 3D or embossed effect with an image.

 Other special effects that I may dream up or discover while doing the background

research for the lessons in this series.

Complete Program Listings

Complete listings of the programs discussed in this lesson are provided in Listing 20 through

Listing 23. In order to use these programs, you will also need copies of the program named

ImgMod02a and the interface named ImgIntfc02 from the earlier lessons titled Processing

Image Pixels Using Java: Controlling Contrast and Brightness and Processing Image Pixels using

Java, Getting Started.

A disclaimer

The programs that I am providing and explaining in this series of lessons are not intended to be

used for high-volume production work. Numerous integrated image-processing programs are

available for that purpose. In addition, the Java Advanced Imaging API (JAI) has a number of

built-in special effects if you prefer to write your own production image-processing programs

using Java.

The programs that I am providing in this series are intended to make it easier for you to develop

and experiment with image-processing algorithms and to gain a better understanding of how they

work, and why they do what they do.

/*File ImgMaker01.java

Copyright 2004, R.G.Baldwin

The purpose of this program is to write an output

jpg file named junk.jpg containing a white square

centered in a square black image. The length of

the sides of the image and the length of the

sides of the white square are provided by the

user as command line parameters. If the user

doesn't provide these values, the default size of

the image is 31 pixels on each side and the

default size of the white square is 9 pixels.

http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49938/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest
http://cnx.org/content/m49936/latest/?collection=col11642/latest

The output image files produced by this program

are very useful for testing and illustrating the

effects of 2D convolution.

Usage:

java ImageMaker01 ImageSize SquareSize

where:

ImageSize is the number of pixels on the side of

 the square image.

SquareSize is the number of pixels on the side of

 the white square centered in the image.

The red,green, and blue values of the pixels in

the white square are all 255. The value of the

alpha byte for all pixels is set to 255. (See

later note regarding the writing of the jpg

file.)

All red, green, and blue pixel values outside the

white square are zero. Note, however, that when

these values are written into the jpg file and

later read into another program, some of the

values may be found to exhibit small errors.

Apparently this is the result of encoding and

later decoding the data in the jpg file.

The program writes the image into a file named

junk.jpg. Note that this program can't handle

alpha bytes with different values when writing

the file. Rather, it writes the three color

bytes into the output file, apparently setting

the alpha byte to 255.

This file writing capability is based on

information obtained from the following web

sites:

https://jaistuff.dev.java.net/data.html

https://jaistuff.dev.java.net/Code/data/

 CreateRGBImage.java

The program stores the pixel data for the white

square into a 3D array of type:

int[row][column][depth].

The first two dimensions of the array correspond

to the rows and columns of pixels in the image.

The third dimension always has a value of 4 and

contains the following values by index value:

0 alpha (not set within the program)

1 red

2 green

3 blue

Note that these values are stored as type int

rather than type unsigned byte which is the

format of pixel data in the an image. The values

are converted to type unsigned byte during the

writing of the jpg file.

Tested using SDK 1.4.2 under WinXP.

**/

import java.awt.*;

import java.awt.image.*;

import javax.media.jai.*;

class ImgMaker01 extends Frame{

 public static void main(String[] args){

 int imgCols = 31;//default values

 int imgRows = 31;

 int whiteSquareSize = 9;

 if(args.length == 2){

 //Get size of image and size of white

 // square from command-line args.

 imgCols = Integer.parseInt(args[0]);

 imgRows = imgCols;

 whiteSquareSize =

 Integer.parseInt(args[1]);

 }//end else

 int[][][] threeDPix = createThreeDImage(

 imgCols,imgRows,whiteSquareSize);

 writeImageFile(threeDPix,imgCols,imgRows);

 }//end main

 //---//

 static int[][][] createThreeDImage(

 int imgCols,

 int imgRows,

 int whiteSquareSize){

 int[][][] temp3D =

 new int[imgRows][imgCols][4];

 for(int col = imgCols/2 - whiteSquareSize/2;

 col < imgCols/2 + whiteSquareSize/2;

 col++){

 for(

 int row = imgRows/2 - whiteSquareSize/2;

 row < imgRows/2 + whiteSquareSize/2;

 row++){

 //Set values for red, green, and blue

 // colors in the white square.

 temp3D[row][col][1] = 255;//red

 temp3D[row][col][2] = 255;//green

 temp3D[row][col][3] = 255;//blue

 }//end inner for loop

 }//end outer for loop

 //Return the array of image data.

 return temp3D;

 }//end createThreeDImage

 //---//

 /*Write the image to a file named junk.jpg.

 Note that this program can't handle the alpha

 byte when writing the file. Rather, the

 program only writes the three color bytes

 into the output file, apparently setting the

 alpha byte to 255. This file writing

 capability is based on information at:

 https://jaistuff.dev.java.net/data.html and

 https://jaistuff.dev.java.net/Code/data/

 CreateRGBImage.java

 */

 static void writeImageFile(int[][][] threeDPix,

 int imgCols,

 int imgRows){

 byte[] imageDataBytes = new byte[

 imgCols*imgRows*3];

 int count = 0;

 for(int h = 0;h < imgRows;h++)

 for(int w = 0;w < imgCols;w++){

 //Rearrange the data into a one-

 // dimensional array of type byte. Note

 // that this array does not contain alpha

 // byte values.

 imageDataBytes[count+0] =

 (byte)threeDPix[h][w][3];

 imageDataBytes[count+1] =

 (byte)threeDPix[h][w][2];

 imageDataBytes[count+2] =

 (byte)threeDPix[h][w][1];

 count += 3;

 }//end for loop

 // Create a Data Buffer from the values in

 // the single image array.

 DataBufferByte dbuffer = new DataBufferByte(

 imageDataBytes,imgCols*imgRows*3);

 // Create a pixel-interleaved data sample

 // model.

 SampleModel sampleModel =

 RasterFactory.

 createPixelInterleavedSampleModel(

 DataBuffer.TYPE_BYTE,

 imgCols,

 imgRows,

 3);

 // Create a compatible ColorModel.

 ColorModel colorModel =

 PlanarImage.createColorModel(sampleModel);

 // Create a WritableRaster.

 Raster raster =

 RasterFactory.createWritableRaster(

 sampleModel,dbuffer,new Point(0,0));

 // Create a TiledImage using the SampleModel.

 TiledImage tiledImage = new TiledImage(0,0,

 imgCols,imgRows,0,0,

 sampleModel,

 colorModel);

 // Set the data of the tiled image to be the

 // raster.

 tiledImage.setData(raster);

 // Save the image in a file using one of the

 // overloaded versions of the create method.

 // Note that other file types can be written

 // by using a different value for the third

 // parameter as in the following:

 //JAI.create("filestore",tiledImage,

 // "junk.tif","TIFF");

 JAI.create("filestore",tiledImage,

 "junk.jpg","JPEG");

 }//end writeImageFile

}//end ImgMaker01 class

Listing 20

/*File ImgMaker02.java

Copyright 2004, R.G.Baldwin

The purpose of this program is to write an output

jpg file named junk.jpg containing a single white

impulse centered in a square black image. The

length of the sides of the image is provided by

the user as a command line parameter. If the

user doesn't provide this value, the default size

of the image is 31 pixels on each side.

This program is useful for creating a jpg file

that can be used to get the 2D impulse response

of a 2D convolution filter.

Usage:

java ImageMaker01 ImageSize

where:

ImageSize is the number of pixels on the side of

 the square image.

The red,green, and blue values of the pixels in

the white impulse are all 255. The value of the

alpha byte is 255 (see later discussion of the

alpha byte).

The program writes the image into a file named

junk.jpg. Note that this program can't handle

alpha bytes with different values when writing

the file. Rather, it writes the three color

bytes into the output file, apparently setting

the alpha byte to 255.

This file writing capability is based on

information obtained from the following web

sites:

https://jaistuff.dev.java.net/data.html

https://jaistuff.dev.java.net/Code/data/

 CreateRGBImage.java

The program stores the pixel data for the white

impulse into a 3D array of type:

int[row][column][depth].

The first two dimensions of the array correspond

to the rows and columns of pixels in the image.

The third dimension always has a value of 4 and

contains the following values by index value:

0 alpha (not set in the program)

1 red

2 green

3 blue

Note that these values are stored as type int

rather than type unsigned byte which is the

format of pixel data in the an image. The values

are converted to type unsigned byte during the

writing of the jpg file.

Tested using SDK 1.4.2 under WinXP.

**/

import java.awt.*;

import java.awt.image.*;

import javax.media.jai.*;

class ImgMaker02 extends Frame{

 public static void main(String[] args){

 int imgCols = 31;//default values

 int imgRows = 31;

 if(args.length == 2){

 //Get size of image from command-line args.

 imgCols = Integer.parseInt(args[0]);

 imgRows = imgCols;

 }//end else

 int[][][] threeDPix = createThreeDImage(

 imgCols,imgRows);

 writeImageFile(threeDPix,imgCols,imgRows);

 }//end main

 //---//

 static int[][][] createThreeDImage(int imgCols,

 int imgRows){

 int[][][] temp3D =

 new int[imgRows][imgCols][4];

 int col = imgCols/2;

 int row = imgRows/2;

 //Set values for red, green, and

 // blue colors in the white impulse.

 temp3D[row][col][1] = 255;//red

 temp3D[row][col][2] = 255;//green

 temp3D[row][col][3] = 255;//blue

 //Return the array of image data.

 return temp3D;

 }//end createThreeDImage

 //---//

 /*Write the image to a file named junk.jpg.

 Note that this program can't handle the alpha

 byte when writing the file. Rather, the

 program only writes the three color bytes

 into the output file, apparently setting the

 alpha byte to 255. This file writing

 capability is based on information at:

 https://jaistuff.dev.java.net/data.html and

 https://jaistuff.dev.java.net/Code/data/

 CreateRGBImage.java

 */

 static void writeImageFile(int[][][] threeDPix,

 int imgCols,

 int imgRows){

 byte[] imageDataBytes = new byte[

 imgCols*imgRows*3];

 int count = 0;

 for(int h = 0;h < imgRows;h++)

 for(int w = 0;w < imgCols;w++){

 //Rearrange the data into a one-

 // dimensional array of type byte. Note

 // that this array does not contain alpha

 // byte values.

 imageDataBytes[count+0] =

 (byte)threeDPix[h][w][3];

 imageDataBytes[count+1] =

 (byte)threeDPix[h][w][2];

 imageDataBytes[count+2] =

 (byte)threeDPix[h][w][1];

 count += 3;

 }//end for loop

 // Create a Data Buffer from the values in

 // the single image array.

 DataBufferByte dbuffer = new DataBufferByte(

 imageDataBytes,imgCols*imgRows*3);

 // Create a pixel-interleaved data sample

 // model.

 SampleModel sampleModel =

 RasterFactory.

 createPixelInterleavedSampleModel(

 DataBuffer.TYPE_BYTE,

 imgCols,

 imgRows,

 3);

 // Create a compatible ColorModel.

 ColorModel colorModel =

 PlanarImage.createColorModel(sampleModel);

 // Create a WritableRaster.

 Raster raster =

 RasterFactory.createWritableRaster(

 sampleModel,dbuffer,new Point(0,0));

 // Create a TiledImage using the SampleModel.

 TiledImage tiledImage = new TiledImage(0,0,

 imgCols,imgRows,0,0,

 sampleModel,

 colorModel);

 // Set the data of the tiled image to be the

 // raster.

 tiledImage.setData(raster);

 // Save the image in a file using one of the

 // overloaded versions of the create method.

 // Note that other file types can be written

 // by using a different value for the third

 // parameter as in the following:

 //JAI.create("filestore",tiledImage,

 // "junk.tif","TIFF");

 JAI.create("filestore",tiledImage,

 "junk.jpg","JPEG");

 }//end writeImageFile

}//end ImgMaker02 class

Listing 21

/*File ImgMod24.java.java

Copyright 2004, R.G.Baldwin

This program allows for multiple successive

convolutions using a fixed 3x3 flat convolution

filter. The result approaches a Gaussian

filter as more successive convolutions are

performed.

This program normalizes the output so that the

largest color value in the output always matches

the largest color value in the input. This may

or may not be desirable depending on the

circumstances.

This program is designed to be driven by the

program named ImgMod02. Enter the following at

the command line to run this program.

java ImgMod02 ImgMod24 ImageFileName

This program illustrates the use of area

(two-dimensional) convolution filtering to

smooth or blur an image. In particular, it

illustrates the process of multiple successive

convolutions, which causes the convolution

operation to approach the convolution of the

image with a Gaussian filter.

The program displays two frames on the screen.

The large frame on the left shows the original

image at the top and the filtered image at the

bottom. It also has a button labeled Replot at

the very bottom.

The small frame on the right contains a TextField

for user input. When the program starts running,

this TextField displays the value 1. The

value in the text field specifies the number of

successive convolutions that are to be performed

on the image using a flat 3x3 convolution

filter.

To specify the number of convolutions, type an

integer value into the TextField and click the

Replot button. This will cause the process to

start over and cause the filter to be applied the

specified number of times before the new results

are displayed.

This is a low-pass filter that suppresses high

frequency changes in color values. It adds

all of the pixel values for each color within the

area covered by the filter. Then it moves to the

next registration point and adds the pixel

values then contained in the area. When the

convolution operation is complete, all of the

color values in the output are scaled so that the

peak color value in the output matches the peak

color value in the input.

Each pixel, except those in the outer edges of

the image, is used as a registration point. The

pixels around the outer edges are not used as

registration points because that would cause the

area to extend outside the valid pixel values.

The visual effect of applying this filter is to

cause the image to go increasingly out of focus

as the number of convolutions is increased. The

effect is most obvious with images that have

well-defined lines such as characters.

The transparency or alpha value of each pixel is

preserved. If you don't see what you expect to

see when you run this program with a particular

image, it may be because your image contains

transparent areas. This will be evidenced by the

yellow background color of the canvas showing

through the image.

Tested using SDK 1.4.2 and WinXP

**/

import java.awt.*;

class ImgMod24 extends Frame implements

 ImgIntfc02{

 int numberConvolutions;

 String inputData;//Obtained via the TextField

 TextField input;//User input field

 ImgMod24(){//constructor

 setLayout(new FlowLayout());

 Label instructions = new Label(

 "Number of convolutions/replot.");

 add(instructions);

 input = new TextField("1",5);

 add(input);

 setTitle("Copyright 2004, Baldwin");

 setBounds(400,0,200,100);

 setVisible(true);

 }//end constructor

 //---//

 //This method is required by ImgIntfc02. This

 // method applies the convolution filter

 // to the incoming 3D array of pixel data and

 // returns a normalized filtered 3D array of

 // pixel data. The output array is normalized

 // such that the peak output color value

 // matches the peak input color value.

 public int[][][] processImg(

 int[][][] threeDPix,

 int imgRows,

 int imgCols){

 System.out.println("\nWidth = " + imgCols);

 System.out.println("Height = " + imgRows);

 //Get numberConvolutions value from the

 // TextField

 numberConvolutions = Integer.parseInt(

 input.getText());

 //Make a working copy of the 3D array to

 // avoid making permanent changes to the

 // original image data. Get and save the

 // maximum value along the way.

 int inputPeak = 0;

 int colorValue = 0;

 int[][][] working3D =

 new int[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 working3D[row][col][0] =

 threeDPix[row][col][0];

 colorValue = threeDPix[row][col][1];

 working3D[row][col][1] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 colorValue = threeDPix[row][col][2];

 working3D[row][col][2] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 colorValue = threeDPix[row][col][3];

 working3D[row][col][3] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 }//end inner loop

 }//end outer loop

 System.out.println(

 "inputPeak = " + inputPeak);

 //Create an empty output array of the same

 // size as the incoming array.

 int[][][] output =

 new int[imgRows][imgCols][4];

 //Copy all alpha values from input to output.

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 output[row][col][0] =

 working3D[row][col][0];

 }//end inner loop

 }//end outer loop

 //Perform the convolution one or more times

 // in succession

 for(int cnt = 0;

 cnt < numberConvolutions;cnt++){

 //Use nested for loops to treat each pixel

 // (other than those along the edges of the

 // image) as registration points and to

 // perform the two-dimensional convolution

 // using a shift-sum-scale approach. Note

 // that this algorithm is somewhat

 // different and probably more efficient

 // than the algorithm used in the program

 // named ImgMod12. However, it is also

 // less flexible in terms of the shapes

 // of the convolution filters that can be

 // used.

 try{

 //Iterate on each pixel as a registration

 // point.

 for(int row = 0 + 1;row < imgRows - 2;

 row++){

 for(int col = 0 + 1;

 col < imgCols - 2;col++){

 int redSum =

 working3D[row - 1][col - 1][1] +

 working3D[row - 1][col - 0][1] +

 working3D[row - 1][col + 1][1] +

 working3D[row - 0][col - 1][1] +

 working3D[row - 0][col - 0][1] +

 working3D[row - 0][col + 1][1] +

 working3D[row + 1][col - 1][1] +

 working3D[row + 1][col - 0][1] +

 working3D[row + 1][col + 1][1];

 int greenSum =

 working3D[row - 1][col - 1][2] +

 working3D[row - 1][col - 0][2] +

 working3D[row - 1][col + 1][2] +

 working3D[row - 0][col - 1][2] +

 working3D[row - 0][col - 0][2] +

 working3D[row - 0][col + 1][2] +

 working3D[row + 1][col - 1][2] +

 working3D[row + 1][col - 0][2] +

 working3D[row + 1][col + 1][2];

 int blueSum =

 working3D[row - 1][col - 1][3] +

 working3D[row - 1][col - 0][3] +

 working3D[row - 1][col + 1][3] +

 working3D[row - 0][col - 1][3] +

 working3D[row - 0][col - 0][3] +

 working3D[row - 0][col + 1][3] +

 working3D[row + 1][col - 1][3] +

 working3D[row + 1][col - 0][3] +

 working3D[row + 1][col + 1][3];

 //Store the convolution output values

 // in the output array.

 output[row][col][1] = redSum;

 output[row][col][2] = greenSum;

 output[row][col][3] = blueSum;

 }//end for loop on col

 }//end for loop on row

 }catch(Exception e){

 e.printStackTrace();

 }//end catch

 //Normalize output peak value to match

 // input peak value.

 //First get output peak value

 int outputPeak = 0;

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 if(output[row][col][1] > outputPeak){

 outputPeak = output[row][col][1];

 }//end if

 if(output[row][col][2] > outputPeak){

 outputPeak = output[row][col][2];

 }//end if

 if(output[row][col][3] > outputPeak){

 outputPeak = output[row][col][3];

 }//end if

 }//end inner loop

 }//end outer loop

 //System.out.println(

 // "outputPeak = " + outputPeak);

 //Normalize to peak value

 double outputScale =

 ((double)inputPeak)/outputPeak;

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 output[row][col][1] =

 (int)(output[row][col][1]*

 outputScale);

 output[row][col][2] =

 (int)(output[row][col][2]*

 outputScale);

 output[row][col][3] =

 (int)(output[row][col][3]*

 outputScale);

 }//end inner loop

 }//end outer loop

 //Copy output into input to prepare for

 // another convolution (no need to copy

 //alpha)

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 working3D[row][col][1] =

 output[row][col][1];

 working3D[row][col][2] =

 output[row][col][2];

 working3D[row][col][3] =

 output[row][col][3];

 }//end inner loop

 }//end outer loop

 }//end for loop on numberConvolutions

 System.out.println("Processing Done");

 //Return a reference to the array containing

 // the filtered pixels.

 return output;

 }//end processImg method

 //---//

}//end class ImgMod24

Listing 22

/*File ImgMod12.java

Copyright 2004, R.G.Baldwin

This program is designed to be driven by the

program named ImgMod02. Enter the following at

the command line to run this program.

java ImgMod02 ImgMod12 ImageFileName

This program illustrates the use of area

(two-dimensional) convolution filtering to blur

an image.

The program displays two frames on the screen.

The large frame on the left shows the original

image at the top and the filtered image at the

bottom. It also has a button labeled Replot at

the very bottom.

The small frame on the right contains a TextField

for user input. When the program starts running,

this TextField displays the size of the default

convolution area in pixels.

To modify the convolution area, type a number

into the TextField and click the Replot button.

The new filter will be applied to the image and

the filtered image will be displayed.

The program supports non-square convolution area

values of 1, 2, 3, 4, 6, and 8 pixels. (The

shape of the convolution area is shown as a grid

of X characters on the screen.)

Area values of 0, 5, and 7 are not supported.

In addition, the program supports all area values

that are perfect squares beginning with an area

value of 4 pixels. However, for area values

greater than 9, the value entered by the user is

automatically rounded to the nearest perfect

square before processing takes place. For

example, if the user enters 10, the actual area

used for convolution will be a square with 3

pixels on each side. If the user enters 15, the

area used for convolution will be a square with 4

pixels on each side.

The convolution operator is a box with each

coefficient having a value of 1. (See

discussion of normalization later.)

This is a low-pass filter that suppresses high

frequency changes in color values. It adds

all of the pixel values for each color within the

area covered by the filter. Then it moves to the

next registration point and adds the pixel

values then contained in the area.

Every pixel, except those in the outer edges of

the image is used as a registration point. The

pixels around the outer edges are not used as

registration points because that would cause the

area to extend outside the valid pixel values.

Once the convolution process is finished, the

output data is normalized such that the peak

color value in the output matches the peak color

value in the input. This may, or may not be

appropriate depending on the circumstances.

However, it does preserve the dynamic range of

the display.

The visual effect of applying this filter is to

cause the image to go increasingly out of focus

as the size of the area is increased. The effect

is most obvious with images that have well

defined lines such as characters.

The transparency or alpha value of each pixel is

preserved. If you don't see what you expect to

see when you run this program with a particular

image, it may be because your image contains

transparent areas. This will be evidenced by the

yellow background color of the canvas showing

through the image.

Tested using SDK 1.4.2 and WinXP

**/

import java.awt.*;

class ImgMod12 extends Frame implements

 ImgIntfc02{

 int area;//The area value in pixels

 String inputData;//Obtained via the TextField

 TextField input;//User input field

 ImgMod12(){//constructor

 setLayout(new FlowLayout());

 Label instructions = new Label(

 "Type an area value and replot.");

 add(instructions);

 input = new TextField("2",5);

 add(input);

 setTitle("Copyright 2004, Baldwin");

 setBounds(400,0,200,100);

 setVisible(true);

 }//end constructor

 //---//

 //This method is required by ImgIntfc02. This

 // method applies the convolution filter

 // to the incoming 3D array of pixel data and

 // returns a filtered 3D array of pixel data.

 public int[][][] processImg(

 int[][][] threeDPix,

 int imgRows,

 int imgCols){

 System.out.println("\nWidth = " + imgCols);

 System.out.println("Height = " + imgRows);

 //Get area value from the TextField

 area = Integer.parseInt(input.getText());

 //Create an empty output array of the same

 // size as the incoming array.

 int[][][] output =

 new int[imgRows][imgCols][4];

 //Make a working copy of the 3D array to

 // avoid making permanent changes to the

 // original image data. Get and save the

 // maximum value along the way.

 int inputPeak = 0;

 int colorValue = 0;

 int[][][] working3D =

 new int[imgRows][imgCols][4];

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 working3D[row][col][0] =

 threeDPix[row][col][0];

 colorValue = threeDPix[row][col][1];

 working3D[row][col][1] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 colorValue = threeDPix[row][col][2];

 working3D[row][col][2] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 colorValue = threeDPix[row][col][3];

 working3D[row][col][3] = colorValue;

 if(colorValue > inputPeak){

 inputPeak = colorValue;

 }//end if

 }//end inner loop

 }//end outer loop

 System.out.println(

 "inputPeak = " + inputPeak);

 //Copy all alpha values from input to output.

 for(int row = 0;row < imgRows;row++){

 for(int col = 0;col < imgCols;col++){

 output[row][col][0] =

 working3D[row][col][0];

 }//end inner loop

 }//end outer loop

 //The following three variables are used to

 // accumulate the products of the pixel color

 // values and the convolution filter

 // coefficients.

 int redSum = 0;

 int greenSum = 0;

 int blueSum = 0;

 //The following variables are used for

 // control purposes while performing the

 // sum of products operation using for loops.

 int rowNo = 0;

 int colNo = 0;

 int row = 0;

 int col = 0;

 int firstRow = 0;

 int lastRow = 0;

 int firstCol = 0;

 int lastCol = 0;

 int minusRow = 0;

 int plusRow = 0;

 int minusCol = 0;

 int plusCol = 0;

 //The following switch statement is used to

 // set the control variables listed above for

 // area values of 1, 2, 3, 4, 6, and 8 on

 // an individual area basis.

 //Area values of 5 and 7 are not supported.

 //Area values of 9 and greater default to

 // the nearest perfect square, such as 9, 16,

 // 25, 36, etc.

 switch(area){

 case 0:

 System.out.println(

 "Area value 0 not supported");

 break;

 case 1://A single pixel reproduces image

 firstRow = 0;

 lastRow = imgRows;

 firstCol = 0;

 lastCol = imgCols;

 minusRow = 0;

 plusRow = 0;

 minusCol = 0;

 plusCol = 0;

 break;

 case 2://Two pixels in a row

 firstRow = 0;

 lastRow = imgRows;

 firstCol = 1;

 lastCol = imgCols;

 minusRow = 0;

 plusRow = 0;

 minusCol = 1;

 plusCol = 0;

 break;

 case 3://Three pixels in a row

 firstRow = 0;

 lastRow = imgRows;

 firstCol = 1;

 lastCol = imgCols - 1;

 minusRow = 0;

 plusRow = 0;

 minusCol = 1;

 plusCol = 1;

 break;

 case 4://Four pixels in a square

 firstRow = 1;

 lastRow = imgRows;

 firstCol = 1;

 lastCol = imgCols;

 minusRow = 1;

 plusRow = 0;

 minusCol = 1;

 plusCol = 0;

 break;

 case 5:

 System.out.println(

 "Area value 5 not supported");

 break;

 case 6://Two rows of 3 pixels

 firstRow = 1;

 lastRow = imgRows;

 firstCol = 1;

 lastCol = imgCols - 1;

 minusRow = 1;

 plusRow = 0;

 minusCol = 1;

 plusCol = 1;

 break;

 case 7:

 System.out.println(

 "Area value 7 not supported");

 break;

 case 8://Two rows of 4

 firstRow = 1;

 lastRow = imgRows;

 firstCol = 2;

 lastCol = imgCols - 1;

 minusRow = 1;

 plusRow = 0;

 minusCol = 2;

 plusCol = 1;

 break;

 //Default to nearest perfect square for

 // area values greater than 8.

 default:

 //Get the side of the square area,

 // rounded to the nearest square.

 double dSide = Math.sqrt(area);

 int side = (int)Math.round(dSide);

 //Set the area value to the nearest

 // perfect square. This is necessary

 // because it is used to scale the

 // accumulated values later.

 area = side*side;

 //Because a square area with an even

 // number of pixels on a side doesn't

 // have a pixel at the center, it must

 // be treated differently from a square

 // area with an odd number of pixels on a

 // side. For the even case, the area

 // above and to the left of the

 // registration point is slightly greater

 // than the area below and to the right.

 if(side%2 == 0){//side is even

 firstRow = side/2;

 lastRow = imgRows - side/2 + 1;

 firstCol = side/2;

 lastCol = imgCols - side/2 + 1;

 minusRow = side/2;

 plusRow = side/2 - 1;

 minusCol = side/2;

 plusCol = side/2 -1;

 }else{//side is odd

 firstRow = side/2;

 lastRow = imgRows - side/2;

 firstCol = side/2;

 lastCol = imgCols - side/2;

 minusRow = side/2;

 plusRow = side/2;

 minusCol = side/2;

 plusCol = side/2;

 }//end else

 }//end switch statement

 //Use nested for loops to treat each pixel

 // (other than those along the edges of the

 // image) as registration points and to

 // perform the two-dimensional convolution.

 try{

 //First iterate on each pixel as a

 // registration point.

 for(row = firstRow;row < lastRow;row++){

 for(col = firstCol;col < lastCol;col++){

 //Now use the registration point as a

 // base and iterate on the pixels

 // contained within the area covered by

 // the convolution filter. Display a

 // grid of X characters on the screen

 // showing the shape of the area

 // covered by the convolution filter.

 // Display the grid only once while

 // processing the first registration

 // point.

 for(rowNo = row - minusRow;

 rowNo <= row + plusRow;rowNo++){

 //Start a new line in the grid of X

 // characters.

 if((row == firstRow)

 && (col == firstCol)){

 System.out.println();

 }//end if

 for(colNo = col - minusCol;

 colNo <= col + plusCol;colNo++){

 //Display the next X in the grid of

 // X characters.

 if((row == firstRow)

 && (col == firstCol)){

 System.out.print("X");

 }//end if

 //Accumulate the pixel values

 // multiplied by the coefficient

 // values in the convolution

 // filter. Note that all

 // coefficients have a value of 1.

 // The accumulated value will later

 // be divided by the area, causing

 // the effective values of the

 // coefficients to be the

 // reciprocal of the area.

 redSum +=

 working3D[rowNo][colNo][1];

 greenSum +=

 working3D[rowNo][colNo][2];

 blueSum +=

 working3D[rowNo][colNo][3];

 }//end for loop on y

 }//end for loop on x

 //Store the accumlator values in the

 // output array.

 output[row][col][1] = redSum;

 output[row][col][2] = greenSum;

 output[row][col][3] = blueSum;

 //Clear the accumulators in preparation

 // for processing the next registration

 // point.

 redSum = 0;

 greenSum = 0;

 blueSum = 0;

 }//end for loop on col

 }//end for loop on row

 }catch(Exception e){

 e.printStackTrace();

 }//end catch

 //Normalize output peak value to match

 // input peak value.

 //First get output peak value

 int outputPeak = 0;

 for(row = 0;row < imgRows;row++){

 for(col = 0;col < imgCols;col++){

 if(output[row][col][1] > outputPeak){

 outputPeak = output[row][col][1];

 }//end if

 if(output[row][col][2] > outputPeak){

 outputPeak = output[row][col][2];

 }//end if

 if(output[row][col][3] > outputPeak){

 outputPeak = output[row][col][3];

 }//end if

 }//end inner loop

 }//end outer loop

 //Normalize to peak value

 double outputScale =

 ((double)inputPeak)/outputPeak;

 for(row = 0;row < imgRows;row++){

 for(col = 0;col < imgCols;col++){

 output[row][col][1] =

 (int)(output[row][col][1]*

 outputScale);

 output[row][col][2] =

 (int)(output[row][col][2]*

 outputScale);

 output[row][col][3] =

 (int)(output[row][col][3]*

 outputScale);

 }//end inner loop

 }//end outer loop

 //Return a reference to the array containing

 // the filtered pixels.

 return output;

 }//end processImg method

 //---//

}//end class ImgMod12

Listing 23

Copyright 2005, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

Richard has participated in numerous consulting projects and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

DSP.) In the following years, he applied his programming and DSP expertise to other interesting

areas including sonar and underwater acoustics.

mailto:baldwin@dickbaldwin.com
http://www.dickbaldwin.com/

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

Keywords
Java pixel convolution filter Gaussian smooth blur image jpg color linear DSP 3D 2D

-end-

mailto:baldwin@dickbaldwin.com

