
Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us,

http://www2.austin.cc.tx.us/baldwin/

JavaBeans, Properties of Beans, Simple and Indexed

Java Programming, Lecture Notes # 508, Revised 02/19/98.

 Preface

 Introduction

 Overview of Properties

 Design Patterns for Simple Properties

 Design Patterns for Boolean Properties

 Design Patterns for Indexed Properties

 Sample Bean Program

 Sample Test Program

 Interesting Code Fragments from the Bean Program

 Interesting Code Fragments from the Test Program

 Program Listing for the Bean Program

 Program Listing for the Test Program

Preface

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for

knowing and understanding all of the material in this lesson.

The material in this lesson is extremely important. However, there is simply too much material to

be covered in detail during lecture periods. Therefore, students in Prof. Baldwin's Advanced

Java Programming classes at ACC will be responsible for studying this material on their own,

and bringing any questions regarding the material to class for discussion.

JDK 1.1 was released on February 18, 1997 and JDK 1.1.1 was released on March 27, 1997.

This lesson was originally written on April 13, 1997 using the software and documentation in the

JDK 1.1.1 download package along with the April 97 release of the BDK 1.0 download package.

You may be wondering why I continue to provide this information. The reason is simple. The

Java JDK and BDK continue to evolve at a very rapid rate with bugs being fixed with each new

release. For example, you may read a lesson and test the programs in that lesson using a later

version of the JDK and BDK than was used when the lesson was originally written. In some

cases, you may get different results. In that case, you need to be aware that things may have

changed with the development software.

For example, earlier lessons which were based on the Beta 3 version of JDK 1.1 discussed a

coordinate offset problem when extracting mouse coordinates from a mouse event. As of JDK

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/

1.1.1, that problem no longer exists. I don't know whether it was fixed in JDK 1.1 Final or JDK

1.1.1, but it has been fixed.

Also, an earlier lesson based on the February 1997 release of BDK 1.0 had an undocumented and

unexpected requirement for special code to properly size a bean when it is placed in the

BeanBox. That requirement no longer exists in the April 1997 version and in that respect, the

BeanBox seems to behave as would be expected. Apparently that was a bug that has also been

fixed.

Introduction

This lesson summarizes information presented earlier on Simple properties and provides

information not previously discussed on Indexed properties. An example bean class is developed

that includes Indexed properties. This bean class is examined with the Introspector and is tested

with a test program designed specifically to exercise the get and set methods for the Indexed

property.

According to JavaSoft,

"A Java Bean is a reusable software component that can be manipulated visually in a

builder tool."

The purpose of a Bean is to be installed in the toolbox of a visual builder tool (VBT) so that it

can be incorporated into new applications and applets with no requirement to recompile the code

for the Bean. Furthermore, two or more Beans should be able to be installed in such an

application and caused to communicate with one another without the requirement to recompile

either of them.

The following five attributes are common to Beans:

 Introspection

 Properties

 Events

 Customization

 Persistence

Previous lessons have provided a general introduction to beans, have provided instructions on

how to use the BeanBox, and have discussed Introspection in detail. This lesson will concentrate

on certain aspects of Properties. Future lessons will continue the discussion of Properties and

will discuss the other attributes as well.

Overview of Properties

In the simplest case, a property of a Bean is represented by an instance variable whose value can

be manipulated using a pair of set and get methods. The Introspector uses design patterns to

identify propeties.

If the set method exists without a corresponding get method, then the property is a write-only

property. Similarly, if the get method exists whthout a corresponding set method, then the

property is a read-only property.

It is also possible to forego design patterns and provide explicit information regarding various

aspects of the interface including Properties.

The Introspector will accept an is method as an alternative to or in addition to a get method for

the special case of boolean properties.

There are four kinds of properties:

 Simple

 Indexed

 Bound

 Constrained

This lesson will concentrate on Simple and Indexed properties. Bound and Constrained

properties will be discussed in a future lesson. Explicit specification of properties will also be

covered in a future lesson.

Design Patterns for Simple Properties

The Introspector uses design patterns to locate properties by looking for methods having

signatures of the form
public void set<PropertyName>(<PropertyType> a)

public <PropertyType> get<PropertyName>()

The existence of a matching pair of such methods is regarded as defining a read-write property

whose name will be <propertyName>. (Note the change in case of the first letter in the property

name. The rules for upper and lower case were explained in the lesson on the Introspector.)

The two methods are used to get and set the property values as the names of the methods imply.

Both methods in the pair may be located either in the same class, or one may be in a subclass and

the other may be in a superclass.

If only one of the methods from the pair exists, then it is regarded either as a read-only or a

write-only property.

The default assumption is that the property is neither bound nor constrained. As mentioned

earlier, this will be discussed in more detail in a subsequent lesson.

Reflecting the above general description in more concrete terms might result in the following

pair of methods for a property named myProperty of type int.

public void setMyProperty(int a){//...};

public int getMyProperty(){//...};

Design Patterns for Boolean Properties

As a special case for boolean properties, the Introspector will recognize the following form

either in place of or in addition to the get method.
public boolean is<PropertyName>()

In either case, if the “ is<PropertyName>” method is present for a boolean property then it will

be used to read the property value.

An example for a boolean property named ready might be:

public boolean isReady(){//...}

public void setReady(boolean m){//...}

It is important to remember that the instance variable used to maintain the value of the property

is not required to have the same name as the property, but it may have the same name.

Design Patterns for Indexed Properties

An indexed property is a property having multiple values stored in an array. The following

design patterns are regarded as indicating a property of this type.
public <PropertyElementType> get<PropertyName>(int a)

public void set<PropertyName>(int a, < PropertyElementType> b)

where the value passed to the integer parameter is the index of the element of interest.

The following example program defines a property according to this design pattern. Application

of the Introspector using JDK 1.1.1 found but did not successfully report the accessor methods

for this property. This may be a bug in the JDK 1.1.1 Introspector, or may be an error in my

program. I'm not certrain as of this writing (April 14, 1997).

It is also possible to have accessor methods which read and/or write the entire array. This results

in design patterns of the following form:

public <PropertyType>[] get<PropertyName>()

public void set<PropertyName>(<PropertyType> a[])

Taking all of this into account might lead to the following four methods in the design pattern for

an indexed property of type MyType named myProperty.
public MyType getMyProperty(int a) //return an element

public void setMyProperty(int a, MyType b) //set an element

public MyType[] getMyProperty() //return an array

public void setMyProperty(MyType a[]) //set an array

Sample Bean Program

In this lesson, we will deal with two different programs. One program is a program that creates a

bean. The other program is a program used to partially test the bean. This section deals with the

program used to create the bean.

This program was designed to be compiled and executed under JDK 1.1.1. It was tested using

JDK 1.1.1 and the Apr97 version of the BDK 1.0 under Win95. As mentioned earlier, this is

important information. Testing the same program using a later version of the JDK or BDK may

yield different results.

The purpose of this program is to illustrate simple and indexed properties. An illustration of

bound and constrained properties is deferred until a future lesson.

This bean contains three properties: a simple Color property named color, a simple boolean

property named ready, and an indexed int property named indexedProperty. (It also contains a

read-only property named preferredSize which resulted from providing that information for the

benefit of the layout manager.)

The behavior of the properties was first tested by installing the bean in the BeanBox and

observing the behavior.

The bean contains a method named makeBlue() which sets the background color of the bean to

blue by invoking the set method of the color property. This method was included for the sole

purpose of illustrating the setting of a property by invoking its set method under program control.

A button was installed in the BeanBox along with this bean. By linking the actionPerformed()

event of the button to the makeBlue() method of the bean, that button was used to invoke the

makeBlue() method which in turn demonstrated the ability to set the color property under

program control. When the button was clicked, the background color of the bean burned blue.

It was also observed that the color property and the ready property both appeared in the property

editor of the BeanBox and behaved as would be expected, both for setting and getting the values

of the properties. This was considered to be an adequate test of both of the simple properties.

The fact that the bean appeared in the BeanBox at the correct size was considered to be an

adequate test of the simple read-only property named preferredSize.

The indexed property did not appear in the property editor of the BeanBox. I was unable to find

anything in the documentation on the BeanBox regarding the use of the property editor with

indexed properties, so I really am not certain what we should expect in this regard.

Primarily because we were unable to test the indexed property using the BeanBox, the bean was

tested further using two other approaches.

First, a special test program named Beans02Test was written to test the indexed property of the

bean. This program tested the ability to set and get the individual elements of the indexed

property under program control. It also tested the ability to set and get the entire indexed

property array under program control.

The results of those tests appeared to be successful and are contained in the comments in the

program listing for that program. They will be discussed in a later section.

Next, an Introspection program named Introspect01 was applied to the bean to report on its

properties. The program named Introspect01 is a program developed in an earlier lesson that

applies introspection and reports on the properties, events, and methods of a bean. Application of

the Introspect01 program to this bean produced the following output (since this bean was

developed to illustrate properties, only that portion of the report dealing with properties is

shown).

Name of bean: Beans02

Class of bean: class Beans02

==== Properties: ====

Name: indexedProperty

 Type: class [I

 Get method: public synchronized int[] Beans02.getIndexedProperty()

 Set method: public synchronized void Beans02.setIndexedProperty(int[])

Name: preferredSize

 Type: class java.awt.Dimension

 Get method: public synchronized java.awt.Dimension

Beans02.getPreferredSize()

 Set method: null

Name: color

 Type: class java.awt.Color

 Get method: public synchronized java.awt.Color Beans02.getColor()

 Set method: public synchronized void Beans02.setColor(java.awt.Color)

Name: ready

 Type: boolean

 Get method: public synchronized boolean Beans02.isReady()

 Set method: public synchronized void Beans02.setReady(boolean)

===

The report on all of the simple properties look correct.

The Type specification for the indexed property looks a little strange. Otherwise, the report looks

correct insofar as the set and get methods for setting and getting the entire array of indexed

property values is concerned.

However, it is bothersome that the Introspector did not also report the set and get methods for

setting and getting a single indexed element for the indexed property.

To further investigate this, the methods that set and get the entire indexed property were removed

from the program. Then the program was recompiled and tested again using the Introspector.

When this was done, the Introspector reported the following regarding the indexed property:

Name: indexedProperty

 Type: null

 Get method: null

 Set method: null

===

This is definitely not what we would hope to see. The Introspector appears to be able to

recognize the existence of the indexed property, but does not properly report on the accessor

methods for the individual elements. I don't know if this is a bug in the system or an error in my

program. Again, for the record, these results were obtained using JDK 1.1.1. Performing the

same tests with a later version may produce different results.

Note: This same test was performed again in October 1997 using JDK 1.1.3 and the results were

the same. The Introspector still didn't seem to be able to properly report on the accessor

methods for the individual elements.

With respect to getting different results from later versions of the JDK and BDK, note that the

undocumented requirement for a special sizeToFit() method that existed in the Feb97 version of

BDK 1.0 was eliminated in the Apr97 version. For more details on this, see the earlier lesson on

the skeleton bean. It now appears that this was a bug in the Feb97 version that was eliminated in

the Apr97 version.

For the record, the batch file used to install this bean in the beanbox contained the following:

jar cfm ..\jars\Beans02.jar Beans02.mft sunw\demo\beans02*.class
The manifest file named Beans02.mft used in conjunction with the batch file to install the bean

in the beanbox contained the following:
Name: sunw/demo/beans02/Beans02.class
Java-Bean: True

The following package specification was required to install the Bean in the BeanBox. Note that

the package specification changes depending on where the Bean is installed in the directory

structure.
package sunw.demo.beans02;

Sample Test Program

As mentioned above, the BeanBox could not be adequately used to test the indexed property of

this bean. Therefore, a special test program was written to test just that aspect of the bean.

This program was designed to be compiled and executed under JDK 1.1.1. The program was

tested using JDK 1.1.1 under Win95.

This is a minimal test program for Beans02.java. It is designed to test only the indexed property

of Beans02. The other properties of Beans02 can be tested adequately in the BeanBox.

The program executes a series of statements that invoke the set and get methods of the indexed

property of the bean both for individual elements and for the entire indexed property array.

The test appeared to be completely successful. The code in this test program is almost trivial and

is interesting only because it is being used to test an indexed property of a bean. Since it is so

simple, it won't be discussed in detail at this point. However, the entire program listing as well as

the output produced by the program is provided at the end of this lesson for your review.

Interesting Code Fragments from the Bean Program

The first interesting code fragment is the declaration of the three instance variables that are used

to maintain the property values. This is followed immediately by the constructor that, among

other things, instantiates an array object for maintenance of the values of the indexed property.

Recall that in Java, you must declare a reference variable for an array and then instantiate an

actual array object which is referenced by that reference variable.

 protected Color myColor;

 protected boolean readyPropertyValue = true;

 protected int[] myIndexedInstanceVariable;

 public Beans02(){//constructor

 myColor = Color.yellow;//initialize the background color to yellow

 setBackground(myColor);

 //Instantiate an array object to maintain the indexed property

 myIndexedInstanceVariable = new int[3];

 }//end constructor

The next interesting code fragment is the pair of set and is methods which, along with the

instance variable named readyPropertyValue, constitutes the simple property named ready.

Recall that for the special case of boolean properties, either a get method or an is method will

satisfy the design pattern requirement.

 public synchronized boolean isReady(){

 return readyPropertyValue;

 }//end isDummyInstanceVariable()

 public synchronized void setReady(boolean data){

 readyPropertyValue = data;

 }//end setReady

The next interesting code fragment is the pair of set and get methods which, along with the

instance variable named myColor, constitute the simple property named color.

 public synchronized void setColor(Color inColor){

 myColor = inColor;

 this.setBackground(myColor);

 }//end setColor()

 public synchronized Color getColor(){

 return myColor;

 }//end getColor

The next interesting code fragment is the method named makeBlue() that was included in the

bean solely to illustrate the ability to modify the color property under program control by

invoking its set method. Properties are often modified at design time using property editors in

builder tools, and are often modified at runtime by invoking set methods under program control.

 public synchronized void makeBlue(){

 this.setColor(Color.blue);

 };//end makeBlue()

That brings us to the interesting code fragments for the indexed properties. The following two

methods are intended to satisfy the design pattern requirement for setting and getting individual

elements in an indexed property. Although these methods seem to match the specifications, they

don't seem to be properly recognized by the Introspector in JDK 1.1.1 as discussed in an earlier

section.

They do respond properly to the test program which is listed at the end of the lesson. It seems as

if the design pattern matching capability of the Introspector doesn't work correctly for the case

where the get method signature contains an argument and the set method signature contains two

arguments which is the requirement for getting and setting individual indexed values for an

indexed property.

 public synchronized int getIndexedProperty(int a){

 return myIndexedInstanceVariable[a];

 }//end getIndexedProperty

 public synchronized void setIndexedProperty(int a, int b){

 myIndexedInstanceVariable[a] = b;

 }//end setIndexedProperty

The next interesting code fragment is the following pair of methods that satisfy the design

pattern requirement for setting and getting the entire array that maintains the values of an

indexed property. Although the design pattern for setting and getting individual elements in the

indexed property don't seem to work properly, the design pattern for setting and getting all of the

elements as a group does seem to work properly. See the discussion in an earlier section.

 public synchronized int[] getIndexedProperty(){

 return myIndexedInstanceVariable;

 }//end int[] getIndexedProperty()

 public synchronized void setIndexedProperty(int a[]){

 myIndexedInstanceVariable = a;

 }//

The next interesting code fragment is interesting only because it represents a bug fix in the

Apr97 version of BDK 1.0. This is a relatively standard method for establishing the size of a

component at display time. The Feb97 version of the BDK did not properly use this method to

set the size of the bean, but that problem has been fixed in the Apr97 version.

 public synchronized Dimension getPreferredSize(){

 return new Dimension(50,50);

 }//end getPreferredSize()

Interesting Code Fragments from the Test Program

As mentioned earlier, the test program is so simple that it really doesn't contain any interesting

code fragments. The program simply invokes the set and get methods of the indexed property,

both for individual elements and for the complete set of indexed property values. The results are

entirely as would be expected. A listing of the program and the output produced by the program

is included at the end of the lesson.

Program Listing for the Bean Program

This section contains a commented listing of the bean program. See the previous sections for an

operational description of the program.

/*File Beans02.java.java Copyright 1997, R.G.Baldwin

This program was designed to be compiled and executed under JDK 1.1.1.

It was tested using JDK 1.1.1 and the Apr97 version of the BDK 1.0

under Win95.

The purpose of this program is to illustrate simple and indexed

properties.

The following package specification was required to install the Bean in

the BeanBox. Note that the package specification changes depending on

where the Bean is installed in the directory structure.

*/

package sunw.demo.beans02;

import java.awt.event.*;

import java.awt.*;

import java.io.Serializable;

//===

public class Beans02 extends Canvas implements Serializable{

 //The following three instance variables are used for properties

 protected Color myColor;

 protected boolean readyPropertyValue = true;

 protected int[] myIndexedInstanceVariable;

 public Beans02(){//constructor

 myColor = Color.yellow;//initialize the background color to yellow

 setBackground(myColor);

 //Instantiate an array object to maintain the indexed property

 myIndexedInstanceVariable = new int[3];

 }//end constructor

 //--

 //The following "set" and "is" methods in conjunction with the instance

 // variable readyPropertyValue constitute a boolean property named ready.

 // For boolean properties, either a "get" method or an "is" method will

 // support the design pattern requirement.

 public synchronized boolean isReady(){

 return readyPropertyValue;

 }//end isDummyInstanceVariable()

 public synchronized void setReady(boolean data){

 readyPropertyValue = data;

 }//end setReady

 //--

 //The following "set" and "get" methods in conjunction with the instance

 // variable myColor constitute a property of type Color named color.

 public synchronized void setColor(Color inColor){

 myColor = inColor;

 this.setBackground(myColor);

 }//end setColor()

 public synchronized Color getColor(){

 return myColor;

 }//end getColor

 //---

 //The following method is included to demonstrate that the color

 // property can be set under program control by invoking its set access

 // method.

 public synchronized void makeBlue(){

 this.setColor(Color.blue);

 };//end makeBlue()

 //---

 //The following two methods are intended to satisfy the design pattern

 // for setting and getting elements from an indexed property. See the

 // comments at the beginning of the program for a further discussion

 // on this.

 public synchronized int getIndexedProperty(int a){

 return myIndexedInstanceVariable[a];

 }//end getIndexedProperty

 public synchronized void setIndexedProperty(int a, int b){

 myIndexedInstanceVariable[a] = b;

 }//end setIndexedProperty

 //---

 //The following two methods satisfy the design pattern for setting and

 // getting the entire array for an indexed property.

 public synchronized int[] getIndexedProperty(){

 return myIndexedInstanceVariable;

 }//end int[] getIndexedProperty()

 public synchronized void setIndexedProperty(int a[]){

 myIndexedInstanceVariable = a;

 }//

 //---

 //This method defines the display size of the object when it appears

 // in the BeanBox. It is called automatically by the layout manager

 // or whatever is controlling the placement and size of components

 // in the display window. Note that the Feb97 version of BDK 1.0 did

 // not properly support this approach but the Apr97 version does

 // support it.

 public synchronized Dimension getPreferredSize(){

 return new Dimension(50,50);

 }//end getPreferredSize()

}//end class Beans02.java

Program Listing for the Test Program

This section contains a listing of a test program written to test the indexed property of the bean

program. The output from running the test is also contained in the listing.

/*File Beans02Test.java.java Copyright 1997, R.G.Baldwin

This program was designed to be compiled and executed under JDK 1.1.1.

The program was tested using JDK 1.1.1 and the Apr97 version of

BDK 1.0 under Win95.

This is a minimal test program for Beans02.java. It is designed to

test only the indexed property of Beans02. The other properties of

Beans02 can be tested adequately in the BeanBox.

Output from the program is:

Set, get, and display value of 30 in index 2

30

Get, display, and modify entire property array

0

0

30

Using modified array, set, get, and display entire property array

0

1

*/

import java.awt.*;

import java.awt.event.*;

//==

public class Beans02Test extends Frame{

 public static void main(String[] args){

 new Beans02Test();

 }//end main

 public Beans02Test(){//constructor

 setTitle("Copyright 1997, R.G.Baldwin");

 setLayout(new FlowLayout());

 Beans02 myBean = new Beans02();//instantiate a Bean object

 add(myBean);//Add it to the Frame

 setSize(250,200);

 setVisible(true);

 System.out.println("Set, get, and display value of 30 in index 2");

 myBean.setIndexedProperty(2,30);//store value of 30 in index 2

 System.out.println(myBean.getIndexedProperty(2));//get and display it

 System.out.println("Get, display, and modify entire property array");

 int[] myArray = myBean.getIndexedProperty();//get the entire property

array

 for(int cnt = 0; cnt < myArray.length; cnt++){

 System.out.println(myArray[cnt]); //display it

 myArray[cnt] = cnt;//modify it

 }//end for loop

 System.out.println(

 "Using modified array, set, get, and display entire property

array");

 myBean.setIndexedProperty(myArray);//set property with modified array

 myArray = myBean.getIndexedProperty();//get the entire property array

 for(int cnt = 0; cnt < myArray.length; cnt++)

 System.out.println(myArray[cnt]); //display the modified version

 this.addWindowListener(new Terminate());//terminate when Frame is

closed

 }//end constructor

}//end class Beans02Test.java

//==

class Terminate extends WindowAdapter{

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program when the window is closed

 }//end windowClosing

}//end class Terminate

//==

-end-

