
Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us,

http://www2.austin.cc.tx.us/baldwin/

JavaBeans, A Skeleton Bean Program

Java Programming, Lecture Notes # 502, Revised 02/16/98.

 Preface

 Introduction

 Skeleton Bean Program

o Interesting Code Fragments

o Listing of Skeleton Bean Program

 Listing of Test Program

Preface

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for

knowing and understanding all of the material in this lesson.

Introduction

A previous lesson provided an overview of Java Beans. This lesson expands on that overview by

providing a skeleton Java Bean program that contains many of the interface characteristics

required of all Beans.

In addition, this lesson provides a Java application program to test the Bean. As you will see, the

test program is longer and more complex than the Bean program. The test program is included

for two reasons:

 To illustrate the ease with which Beans can be incorporated into ordinary Java

applications.

 To help you appreciate the simplicity of testing a Bean using the JavaSoft BeanBox

which we will study in a subsequent lesson.

Even though the test program is longer and more complex, there is nothing contained in that

program that you haven't seen many times in previous lessons. Therefore, very little space will

be devoted to discussing the test program.

Skeleton Bean Program

This program was designed to be compiled and executed under JDK 1.1.1 in compliance with the

JavaBeans specification 1.0.

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/

A Java Bean is a reusable software component that can be manipulated visually in a builder tool.

Creating such a component requires careful adherence to a specified interface. This program

produces a skeleton Bean that exhibits many of the required interface characteristics and other

required attributes of a Bean.

Information about the Bean interface can be provided by the programmer to the builder tool

either

 by adherence to design patterns, or

 by publishing that information in an object of a class that implements the BeanInfo

interface.

This program relies on design patterns.

Some essential information for developing Beans is listed below.

 All beans should implement the Serializable interface so that their state can be saved and

later restored.

 Methods that are to be exposed to the builder tool and to other beans must be made

public.

 All exposed methods should be made threadsafe (possibly synchronized) to prevent

more than one thread from calling a method at any given time.

 Properties are exposed through the use of public "set" and "get" methods. Properties with

no "set" method are read-only. Properties with no "get" method are write-only.

 The "get" side of a boolean property may be exposed either through the use of a public

"is" method or an ordinary "get" method.

 Events which the bean can multicast are exposed through public "add" and "remove"

methods.

The program was tested using JDK 1.1.1 and Win95.

The following package specification was required in order to install the Bean in the JavaSoft

BeanBox. The BeanBox is a Java application that can be used to test Beans. The package

specification may change depending on where the Bean is installed in the directory structure.

package sunw.demo.beans01;

Interesting Code Fragments

The first interesting code fragment is the first line in the class definition showing that the class

implements the Serializable interface. All Beans should implement this interface so that their

state can be saved and later restored.

public class Beans01 extends Canvas

 implements Serializable{

The next interesting code fragment is the declaration of the pair of instance variables that will

later combine with methods to become properties. According to the Java Beans Specification

from JavaSoft,

"Properties are discrete, named attributes of a Java Bean that can affect its appearance or its

behaviour."

For example, a GUI button might have a property named “Label” that represents the text

displayed in the button. However, the String object that constitutes the Label may or may not be

maintained in an instance variable with the same name.

A bean’s properties will usually be persistent. That is, their current state can be stored away as

part of the persistent state of the bean. This is one reason that the class of the Bean object should

implement the Serializable interface.

Properties can have arbitrary types, including primitive types such as int and class or interfaces

types such as java.awt.Color.

As you can see, the instance variables that are used to maintain property values in this skeleton

program are of type Color and boolean.

 protected Color myColor;

 protected boolean myBooleanInstanceVariable = true;

The constructor for the Bean is pretty straightforward except that it contains a call to a method

named sizeToFit(). This method is interesting because it is required to cause the Bean to appear

at the proper size when placed in the BeanBox, but is not required for that purpose when the

Bean is placed in an ordinary Frame object.

As of this writing, I have not determined why it is required in one case and not required in the

other case. The sizeToFit() method follows. Since the body of this method is really more

germane to graphics than to Beans, an analysis of the body of the method will be left as an

exercise for the student.

(Update Notice: April 13, 1997. The apparent bug in the February 1997 version of the BDK 1.0

that required use of the sizeToFit() method has been eliminated in the April 1997 method. When

using the April version, this method is no longer required.)

Note that an auxiliary method, getPreferredSize() that specifies the display size of the Bean is

also shown in this code fragment.

private void sizeToFit () {

 this.setSize(getPreferredSize());

 Component p = getParent();

 if (p != null) {

 p.invalidate();

 p.doLayout();

 }//end if

 }//end sizeToFit()

 public synchronized Dimension getPreferredSize(){

 return new Dimension(50,50);

 }//end getPreferredSize()

The next interesting code fragment is the pair of methods that, when combined with the instance

variable named myBooleanInstanceVariable, constitute the property named

myBooleanProperty. Note that in the special case of boolean properties, you can use either a

"get" method or an "is" method (or both) to satisfy the "get" side of the design pattern for

properties. In this case, we use an "is" method.

 public synchronized boolean isMyBooleanProperty(){

 return myBooleanInstanceVariable;

 }//end isMyBooleanProperty()

 public synchronized void setMyBooleanProperty(

 boolean data){

 myBooleanInstanceVariable = data;

 }//end setMyBooleanProperty

The next interesting code fragment is the pair of "set" and "get" methods which, along with the

instance variable named myColor, constitute the property named color.

 public synchronized void setColor(Color inColor){

 myColor = inColor;

 this.setBackground(myColor);

 }//end setColor()

 public synchronized Color getColor(){

 return myColor;

 }//end getColor

The following two methods are exposed to the builder tool as accessible methods by virtue of the

fact that they are public, and no explicit instructions as to which methods are accessible were

provided. Thus, a builder tool will consider these methods as being available for being invoked

as a result of events emitted by other Beans.

 public synchronized void makeBlue(){

 myColor = Color.blue;

 this.setBackground(myColor);

 };//end makeBlue()

 public synchronized void makeRed(){

 myColor = Color.red;

 this.setBackground(myColor);

 };//end makeRed()

The following pair of "add" and "remove" Listener methods expose the fact that this Bean has

the ability to multicast Action events.

Note, however, that the body of these methods is incomplete for brevity and they are not really

capable of multicasting such events. The builder tool identifies the capability to multicast events

using the "add" and "remove" design pattern and has no way to determine if the body of the

methods really supports the claim made by the design pattern.

 public synchronized void addActionListener(

 ActionListener e){

 //Incomplete. Need to put some substance here

 System.out.println(

 "addActionListener not fully implemented");

 }//end addActionListener()

 public synchronized void removeActionListener(

 ActionListener e){

 //Incomplete. Need to put some substance here

 System.out.println(

 "removeActionListener not fully implemented");

 }//end removeActionListener

These are the interesting code fragments for this skeleton Bean program. A complete listing of

the program is provided in the next section.

Listing of Skeleton Bean Program

This section contains a complete listing of the skeleton Bean program with additional comments.

/*File Beans01.java.java Copyright 1997, R.G.Baldwin

This program was designed to be compiled and executed

under JDK 1.1.1.

A Java Bean is a reusable software component that can be

manipulated visually in a builder tool. This requires

careful adherence to a specified interface.

This program produces a skeleton Bean that exhibits many

of the required interface characteristics of a Bean.

Information about the interface to the bean can be

provided to the builder tool either by adherence to design

patterns, or by publishing that information in an object

of a class that implements the BeanInfo interface. This

program relies on design patterns.

Some guidelines are:

All beans should implement the Serializable interface so

that their state can be saved and later restored.

Methods that are to be exposed to the builder tool and to

other beans must be made public.

All exposed methods should be synchronized to prevent more

than one thread from calling a method at any given time.

Properties are exposed through the use of public

"set"/"get" methods. Properties with no "set" method are

read-only. Properties with no "get" method are write-only.

The "get" side of a Boolean property may be exposed either

through the use of a public "is" methods or an ordinary

"get" method.

Events which the bean can multicast are exposed through

public "add"/"remove" methods.

The program was tested using JDK 1.1.1 and Win95.

**/

//The following package specification is required in order

// to install the Bean in the BeanBox. The package

// specification changes depending on where the Bean is

// installed in the directory structure.

//package sunw.demo.beans01;

import java.awt.event.*;

import java.awt.*;

import java.io.Serializable;

//===//

//All beans should implement the Serializable interface

public class Beans01 extends Canvas

 implements Serializable{

 //The following two instance variables are used for

 // properties

 protected Color myColor;

 protected boolean myBooleanInstanceVariable = true;

 public Beans01(){//constructor

 myColor = Color.yellow;

 setBackground(myColor);

 sizeToFit();//see discussion below

 }//end constructor

 //The following method and the above call to the method

 // in the constructor are required to cause the bean to

 // be the correct size in the BeanBox. It is not

 // required when the Bean is tested in an ordinary Frame

 // object. The reason for the difference hasn't been

 // determined.

 private void sizeToFit () {

 this.setSize(getPreferredSize());

 Component p = getParent();

 if (p != null) {

 p.invalidate();

 p.doLayout();

 }//end if

 }//end sizeToFit()

 //This method defines the display size of the object.

 public synchronized Dimension getPreferredSize(){

 return new Dimension(50,50);

 }//end getPreferredSize()

 //The following "set" and "is" methods in conjunction

 // with the instance variable myBooleanInstanceVariable

 // constitute a boolean property. For boolean properties,

 // either a "get" method or an "is" method will support

 // the design pattern requirement.

 public synchronized boolean isMyBooleanProperty(){

 return myBooleanInstanceVariable;

 }//end isDummyInstanceVariable()

 public synchronized void setMyBooleanProperty(

 boolean data){

 myBooleanInstanceVariable = data;

 }//end setMyBooleanProperty

 //The following "set" and "get" methods in conjunction

 // with the instance variable myColor constitute a

 // property of type Color.

 public synchronized void setColor(Color inColor){

 myColor = inColor;

 this.setBackground(myColor);

 }//end setColor()

 public synchronized Color getColor(){

 return myColor;

 }//end getColor

 //The following two methods are exposed to the builder

 // tool as accessible methods.

 public synchronized void makeBlue(){

 myColor = Color.blue;

 this.setBackground(myColor);

 };//end makeBlue()

 public synchronized void makeRed(){

 myColor = Color.red;

 this.setBackground(myColor);

 };//end makeRed()

 //The following two methods expose to the builder tool

 // the fact that this Bean is able to multicast Action

 // events (but the methods are incomplete for brevity).

 public synchronized void addActionListener(

 ActionListener e){

 //Incomplete. Need to put some substance here

 System.out.println(

 "addActionListener not fully implemented");

 }//end addActionListener()

 public synchronized void removeActionListener(

 ActionListener e){

 //Incomplete. Need to put some substance here

 System.out.println(

 "removeActionListener not fully implemented");

 }//end removeActionListener

}//end class Beans01.java

Listing of Test Program

The following Java application can be used to test the interface of the skeleton Bean program

presented above. There is nothing in this application that hasn't been covered in depth in

previous lessons, so no analysis of the program, other than that provided in the comments, will

be provided.

A subsequent lesson will explain how to also test the skeleton Bean program using the JavaSoft

BeanBox.

/*File Beans01Test.java.java Copyright 1997, R.G.Baldwin

This program was designed to be compiled and executed

under JDK 1.1.1.

The purpose is to test the bean named Beans01.java in a

Frame.

A Bean01 object is placed in the frame along with eight

buttons. The visual manifestation of the Bean object is a

colored square.

One pair of buttons exercises the "get" and "set" color

properties of the Bean.

A second pair of buttons invokes the makeRed() and

makeBlue() methods of the Bean.

A third pair of buttons invokes the addActionListener()

and removeActionListener() methods of the Bean.

A fourth pair of buttons exercises the "set" and "is"

boolean properties of the Bean.

For those cases where information is returned from the

Bean, it is displayed on the standard output device.

The program was tested using JDK 1.1.1 and Win95.

**/

import java.awt.*;

import java.awt.event.*;

//===//

public class Beans01Test extends Frame{

 public static void main(String[] args){

 new Beans01Test();

 }//end main

 public Beans01Test(){//constructor

 setTitle("Copyright 1997, R.G.Baldwin");

 setLayout(new FlowLayout());

 Beans01 myBean = new Beans01();//instantiate Bean obj

 add(myBean);//Add it to the Frame

 //Instantiate several test buttons

 Button buttonToSetColor = new Button(

 "set color property");

 Button buttonToGetColor = new Button(

 "get color property");

 Button buttonToInvokeRedMethod = new Button(

 "Invoke makeRed Method");

 Button buttonToInvokeBlueMethod = new Button(

 "Invoke makeBlue Method");

 Button buttonToAddActionListener = new Button(

 "Add Action Listener");

 Button buttonToRemoveActionListener = new Button(

 "Remove Action Listener");

 Button buttonToSetBooleanProperty = new Button(

 "Set boolean Property");

 Button buttonToGetBooleanProperty = new Button(

 "Get boolean Property");

 //Add the test buttons to the frame

 add(buttonToSetColor);

 add(buttonToGetColor);

 add(buttonToInvokeRedMethod);

 add(buttonToInvokeBlueMethod);

 add(buttonToAddActionListener);

 add(buttonToRemoveActionListener);

 add(buttonToSetBooleanProperty);

 add(buttonToGetBooleanProperty);

 setSize(250,350);

 setVisible(true);

 //Register action listener objects for all the test

 // buttons

 buttonToSetColor.addActionListener(

 new SetColorListener(myBean));

 buttonToGetColor.addActionListener(

 new GetColorListener(myBean));

 buttonToInvokeRedMethod.addActionListener(

 new RedActionListener(myBean));

 buttonToInvokeBlueMethod.addActionListener(

 new BlueActionListener(myBean));

 buttonToAddActionListener.addActionListener(

 new AdditActionListener(myBean));

 buttonToRemoveActionListener.addActionListener(

 new RmovitActionLstnr(myBean));

 buttonToSetBooleanProperty.addActionListener(

 new SetBoolPropLstnr(myBean));

 buttonToGetBooleanProperty.addActionListener(

 new GetBoolPropLstnr(myBean));

 //terminate when frame is closed

 this.addWindowListener(new Terminate());

 }//end constructor

}//end class Beans01Test.java

//===//

//The following two classes are used to instantiate

// objects to be registered to listen to two of the

// buttons on the test panel. When the

// buttonToSetBooleanProperty is pressed, the boolean

// property is set to false. When the

// buttonToGetBooleanProperty is pressed, the current

// boolean property is displayed on the standard output

// device.

class SetBoolPropLstnr implements ActionListener{

 Beans01 myBean;

 SetBoolPropLstnr(Beans01 inBean){//constructor

 myBean = inBean;

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.setMyBooleanProperty(false);

 }//end actionPerformed()

}//end class SetBoolPropLstnr

//===//

class GetBoolPropLstnr implements ActionListener{

 Beans01 myBean;

 GetBoolPropLstnr(Beans01 inBean){//constructor

 myBean = inBean;

 }//end constructor

 public void actionPerformed(ActionEvent e){

 System.out.println(myBean.isMyBooleanProperty());

 }//end actionPerformed()

}//end class GetBoolPropLstnr

//===//

//The following two classes are used to instantiate

// objects to be registered to listen to two of the

// buttons on the test panel. When the setColor button is

// pressed, the Color property is set to green. When the

// getColor button is pressed, the current color is

// displayed on the standard output device.

class SetColorListener implements ActionListener{

 Beans01 myBean;

 SetColorListener(Beans01 inBean){//constructor

 myBean = inBean;

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.setColor(Color.green);

 }//end actionPerformed()

}//end class SetColorListener

//===//

class GetColorListener implements ActionListener{

 Beans01 myBean;

 GetColorListener(Beans01 inBean){//constructor

 myBean = inBean;

 }//end constructor

 public void actionPerformed(ActionEvent e){

 System.out.println(myBean.getColor().toString());

 }//end actionPerformed()

}//end class GetColorListener

//===//

//The following class is used to instantiate a dummy

// ActionListener object which is passed to the

// addActionListener() and removeActionListener() methods

// of the Bean.

class MyDummyActionListener implements ActionListener{

 public void actionPerformed(ActionEvent e){

 }//end empty actionPerformed() method

}//end class MyDummyActionListener

//===//

//The following two classes are used to instantiate

// objects to be registered to listen to two of the

// buttons on the test panel. When the buttons are

// pressed, the addActionListener() and

// removeActionListener() methods of the Bean are invoked.

class AdditActionListener implements ActionListener{

 Beans01 myBean;

 AdditActionListener(Beans01 inBean){//constructor

 myBean = inBean;

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.addActionListener(new MyDummyActionListener());

 }//end actionPerformed()

}//end class AdditActionListener

//===//

class RmovitActionLstnr implements ActionListener{

 Beans01 myBean;

 RmovitActionLstnr(Beans01 inBean){//constructor

 myBean = inBean;

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.removeActionListener(

 new MyDummyActionListener());

 }//end actionPerformed()

}//end class AdditActionListener

//===//

//The following two classes are used to instantiate

// objects to be registered to listen to two of the

// buttons on the test panel. When the buttons are

// pressed, these objects invoke methods of the Bean under

// test. The first class invokes the makeRed() method and

// the second class invokes the makeBlue() method.

class RedActionListener implements ActionListener{

 Beans01 myBean;

 RedActionListener(Beans01 inBean){//constructor

 myBean = inBean;

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.makeRed();

 }//end actionPerformed()

}//end class RedActionListener

//===//

class BlueActionListener implements ActionListener{

 Beans01 myBean;

 BlueActionListener(Beans01 inBean){//constructor

 myBean = inBean;

 }//end constructor

 public void actionPerformed(ActionEvent e){

 myBean.makeBlue();

 }//end actionPerformed()

}//end class RedActionListener

//===//

class Terminate extends WindowAdapter{

 public void windowClosing(WindowEvent e){

 System.exit(0);//terminate the program

 }//end windowClosing

}//end class Terminate

//===//

-end-

