
Richard G Baldwin (512) 223-4758, baldwin@austin.cc.tx.us,

http://www2.austin.cc.tx.us/baldwin/

JavaBeans, Overview

Java Programming, Lecture Notes # 500, Revised 02/14/98.

 Preface

 Introduction

 The Beans Interface

 Properties

 Methods

 Events

 Introspection

 Customization

 Persistence

 The Beanbox

Preface

Students in Prof. Baldwin's Advanced Java Programming classes at ACC are responsible for

knowing and understanding all of the material in this lesson.

Introduction

A Java Bean is the name trademarked by Sun and given to a Java class that adheres to a specific

and well-defined set of interface specifications.

According to JavaSoft,

"A Java Bean is a reusable software component that can be manipulated visually in a builder

tool."

The purpose of a Bean is to be installed in the toolbox of a visual builder tool (VBT) so that it

can be incorporated into new applications and applets with no requirement to recompile the code

for the Bean.

Furthermore, two or more Beans should be able to be installed in such a toolbox and caused to

communicate with one another without the requirement to recompile either of them.

mailto:baldwin@austin.cc.tx.us
http://www2.austin.cc.tx.us/baldwin/

Depending on the capability of the VBT, it may be possible for the programmer to combine two

or more Beans into a working application or applet without the requirement to write any new

code (although the VBT will usually write new code on behalf of the programmer).

For example, the BeanBox that we will discuss later allows Beans to be wired together strictly

using mouse actions on the Beans themselves and on menus.

Once a new application is created by combining individual Beans, it should be possible to save

the new application or applet for later use. This includes saving the current state of all the Beans

incorporated into the application.

If you are familiar with Microsoft's Visual Basic or Borland's Delphi, then you are familiar with

reusable components similar to Java Beans. The VBX files and OCX files used in these two

builder tools serve a purpose similar to that served by Java Beans in Java builder tools.

The Beans Interface

The following five attributes are common to Beans.

 Properties
 Customization

 Persistence

 Events
 Introspection

When we speak of the interface to a class in the context of a Bean, we are usually referring to the

following three attributes of the class:

 Properties
 Methods

 Events

As you can see, with the exception of Methods, these two lists overlap. We will briefly discuss

all five of these attributes in addition to methods in the sections which follow. We will discuss

them all in detail in subsequent lessons.

Properties

In the simplest case, a property of a Bean consists of an instance variable whose value can be

manipulated using a pair of set and get methods. For example, the following pair of methods, in

conjunction with the instance variable to which they refer, constitute a property.

public void setDelay(int delayIn){myDelay = delayIn;}
public int getDelay(){return myDelay;}

(Some OOD books would refer to setDelay() as a mutator and would refer to getDelay() as a

field accessor, or possibly simply as an accessor.)

In this case, according to Beans design patterns, the name of the property is delay and the name

of the instance variable used to maintain the property is myDelay. In this case, the methodology

used to establish that this is a property is based on design patterns (which will be explained in

more detail later).

If the set method exists without a corresponding get method, then the property is a write-only

property. Similarly, if the get method exists without a corresponding set method, then the

property is a read-only property. (This is probably the more common of these two special cases.)

It is also possible to forego design patterns and provide explicit information regarding various

aspects of the interface.

Note that the above methods are declared public. Common jargon has it that this property has

been exposed to the builder tool.

Another design pattern used to identify properties has to do with boolean properties. If the

underlying instance variable type is boolean, an accessor method of the form

public boolean is<PropertyName>()

would expose the property as a boolean property to a VBT.

There are four kinds of properties:

 Simple

 Indexed

 Bound

 Constrained

We will discuss the four types in detail in subsequent lessons.

Methods

All public methods are automatically exposed to the VBT, unless the Bean's methods are

explicitly identified as described above.

Exposure of the methods means that the facilities of the VBT can link events generated by other

Beans to those methods. Stated differently, this means that those methods can be invoked by the

code generated by the VBT as a result of some event possibly involving that Bean or another

Bean.

In the general case, if necessary to provide thread-safe operation, methods in a Bean should be

synchronized to prevent them from being invoked from two or more threads at the same time.

Events

Java Beans use the Delegation Event Model of JDK 1.1 that we learned about in earlier lessons.

By default, a Bean can generate any type of event supported by its parent class.

In addition, a Bean can expose the fact that it can generate events in a multicast sense by

providing a pair of public methods similar to the following (this pair of methods represents

another design pattern):

public synchronized void addMouseListener(MouseListener e){...}
public synchronized void removeMouseListener(MouseListener ml)

 {...}

We have seen methods similar to these in previous lessons discussing event handling in JDK 1.1.

The body of these two methods must be capable of maintaining a list of Listener objects which

are to be notified whenever an event of the specified type occurs. Generally notification will

involve invoking a specific method on each Listener object in the list and passing an object

containing a description of the event as a parameter. We will see examples in subsequent lessons.

In keeping with the terminology of the JDK 1.1 Delegation Event Model, the Bean that

maintains the list is the Source Bean and the objects added to the list (registered) are the Listener

objects.

In this case, a VBT might have the ability to cause other Bean objects to be added to the list of

registered Listener objects so that they would be automatically notified whenever an event of the

specified type occurs on the Source object.

Introspection

The JavaBeans APIs include the following class:

 java.beans.Introspector.

This class provides a standard way for VBTs to learn about the properties, events, and methods

of a target Bean's class.

The Introspector class contains methods that can be used to analyze the target Bean's class and

superclasses looking either for explicit or implicit information. The information discovered is

used to build and return an object of type BeanInfo that describes the target Bean.

As mentioned earlier, the programmer

 can provide explicit information about a Bean,

 can rely on the recognition of design patterns, or

 some combination of the two.

Both approaches will be discussed in detail in a subsequent lesson.

The methods of the Introspector class use low-level reflection techniques in the analysis of the

Bean. Low-level reflection techniques were studied in an earlier lesson.

The primary method of the Introspector class used to analyze a Bean is the getBeanInfo()

method. Simply put, this method takes a target Class object as a parameter and returns a

BeanInfo object containing information about the target class. The BeanInfo class contains a

number of methods that can be used to extract the different elements of information from the

BeanInfo object.

There are two versions of the getBeanInfo() method. The method which accepts only one

parameter returns information about the target class and all its superclasses.

Another version accepts a second Class object as a parameter and uses that class as a ceiling for

introspection up the inheritance hierarchy. For example, if this second class is the direct

superclass of the primary target class, only information about the primary target class is returned.

Customization

Customization is the ability of the VBT to modify the appearance or behavior of the Bean while

integrating it into a larger overall application. Generally this is accomplished by modifying

properties at design time. Most VBTs will provide a property editor as a part of the development

environment for this purpose.

Sometimes it is also desirable for the bean to provide its own property editor to enable a VBT to

modify properties whose type is otherwise unknown to the VBT.

Also, in some cases, the Bean may simply be too complex for the default tools in the VBT to

handle. In those cases, the Bean can provide a customizer.

Persistence

Often it is necessary for the current state of a bean to be distributed in serialized form, or to be

saved and later retrieved. This goes under the name Persistence. In order to accomplish this,

classes for Beans must implement the Serializable interface so that the capabilities of Object

Serialization can be used. Object Serialization was discussed in an earlier lesson.

The Beanbox

As of the original date of this writing (April 1997), the APIs needed to develop Beans were

available for downloading from JavaSoft in the form of the Beans Development Kit (BDK).

When you download the BDK, you also receive a Java application known as the BeanBox. The

BeanBox is an application written in Java that can be used to test your Java Beans.

The BeanBox is not intended to be a Visual Builder Tool. However, it does resemble VBTs in

that it presents a toolbox, a property inspector, and a main form for assembling an application. It

also provides menus which allow you to hook Beans together and also to allow you to apply

introspection and report on a Bean.

In order to place a new Bean in the toolbox for the BeanBox, you need to create a Java Archive

Tool (JAR) file and store that file in a specific directory. Subsequent lessons will contain

discussions regarding the use of the BeanBox for testing Beans as well as procedures for creating

JAR files and installing them in the toolbox.

-end-

