
Java 2D Graphics, The Composite Interface, GradientPaint,

and Transparency

by Richard G. Baldwin

baldwin@austin.cc.tx.us

Java Programming, Lecture Notes # 322

March 20, 2000

 Introduction

 What is the AlphaComposite Class?

 How Do I Get an AlphaComposite Object?

 What is the setComposite() Method?

 Sample Program

 Summary

 Complete Program Listing

Introduction

In an earlier lesson, I explained that the Graphics2D class extends the Graphics class to provide

more sophisticated control over geometry, coordinate transformations, color management, and

text layout. Beginning with JDK 1.2, Graphics2D is the fundamental class for rendering two-

dimensional shapes, text and images.

You also need to understand some other classes and interfaces

I also explained that without understanding the behavior of other classes and interfaces, it is not

possible to fully understand the inner workings of the Graphics2D class.

Throughout this series of lessons, I have been providing you with information and sample

programs designed to help you understand the various classes and interfaces that are necessary

for an understanding of the Graphics2D class.

Two ways to achieve transparency

There are at least two different ways to achieve transparency in Java 2D. One approach is to use

new constructors for the Color class that allow you to create solid colors with a specified degree

of transparency. I will discuss that approach in a subsequent lesson.

A more general approach

mailto:baldwin@austin.cc.tx.us

A second, and possibly more general approach, is to make use of an object that implement the

Composite interface, passing a reference to that object to the setComposite() method of the

Graphics2D class.

You already know about solid colors

An earlier lesson explained the use of the Composite interface for solid colors.

Color gradients

This lesson is designed to give you an understanding of the combination of color gradients and

the Composite interface.

What is the AlphaComposite Class?

The setComposite() method requires a reference to an object that implements the Composite

interface. There is only one class in JDK 1.2.2 that implements the Composite interface:

AlphaComposite.

Many compositing rules

An object of the AlphaComposite class can be used to implement any one of about eight

different compositing rules.

When you draw something, a new source pixel can overlay an existing destination pixel. The

manner in which the color components of the destination pixel are determined depends on the

specific rule being applied.

Flanagan explains the rules

You can read about the different rules in Java Foundation Classes in a Nutshell, by David

Flanagan.

In these lessons, I will illustrate only one of the compositing rules: the rule known as

SRC_OVER.

According to Flanagan, this is “By far the most commonly used compositing rule.” I explained

this rule in detail in an earlier lesson, so I won’t repeat that explanation here.

How Do I Get an AlphaComposite Object?

You cannot directly instantiate an object of the AlphaComposite class. Rather, you get an

AlphaComposite object by invoking the following factory method of the AlphaComposite

class.

public static AlphaComposite

getInstance(int rule, float alpha)

Creates an AlphaComposite object

with the specified rule and the constant

alpha to multiply with the alpha of the

source. The source is multiplied with

the specified alpha before being

composited with the destination.

Parameters:

 rule - the compositing rule

 alpha - the constant alpha to be

multiplied with the alpha of the

source. alpha must be a floating

point number in the inclusive

range [0.0, 1.0].

You specify the rule by passing an int value given by one of the symbolic constants of the

AlphaComposite class, such as SRC_OVER described earlier.

What is the setComposite() Method?

Here is part of what Sun has to say about the setComposite() method of the Graphics2D class.

public abstract void setComposite(

 Composite comp)

Sets the Composite for the

Graphics2D context. The Composite

is used in all drawing methods such as

drawImage, drawString, draw, and fill.

It specifies how new pixels are to be

combined with the existing pixels on

the graphics device during the

rendering process.

Parameters:

 comp - the Composite object to

be used for rendering

The required parameter is a reference to any object that implements the Composite interface,

meaning that you could define your own class to implement this interface.

In this lesson, I elected to make use of the existing AlphaComposite class described above.

Sample Program

This program is named Composite02. You will need to compile and execute the program so that

you can view its output while reading the discussion. Without being able to view the output, the

discussion will probably mean very little to you.

A screen shot of the output

In case you are unable, for some reason, to compile and run the program, here is a screen shot of

the program output. However, this image has been reduced to about seventy-percent of its

original size in pixels. Therefore, some of the quality was lost in the reduction process.

The GUI is a Frame object

The program draws a four-inch by four-inch Frame on the screen. It translates the origin to the

center of the Frame. Then it draws a pair of X and Y-axes centered on the new origin.

A large circle

After drawing the X and Y-axes, the program draws a circle with a thick border centered on the

origin. This circle is used later to provide visual cues relative to transparency.

Transparent ellipses

After the large circle is drawn, three ellipses are drawn on top of one another in each quadrant.

Each ellipse has a common center, and is rotated by sixty degrees relative to the ellipse beneath

it.

Color gradient

The color of each ellipse is based on a color gradient. The color of the ellipse on the bottom of

the stack is a gradient from red to green. The ellipse in the center of the stack is a gradient from

green to blue. The ellipse on the top of the stack is a gradient from blue to red.

Different transparency values

The different ellipses are given various transparency values in the different quadrants to illustrate

the effect of the alpha parameter of the setComposite() method.

Transparency by quadrant

Here is the transparency given to each of the ellipses in the different quadrants.

TRANSPARENCY
Upper-left quadrant
No transparency

Upper-right quadrant
Red to green is not transparent
Green to blue is not transparent
Blue to red is 50-percent transparent

Lower-left quadrant
Red to green is not transparent
Green to blue is 50-percent transparent
Blue to red is 90-percent transparent

Lower-right quadrant
Red to green is not transparent
Green to blue is 90-percent transparent
Blue to red is 90-percent transparent

As you can see from the information given above, the red-to-green ellipse is opaque in all four

quadrants. As a result, the large black circle doesn’t show through the red-to-green ellipse in any

of the quadrants.

Upper-left quadrant

All three ellipses are opaque in the upper-left quadrant, so nothing shows through, and the

stacking order of the ellipses is pretty obvious.

Other ellipses become transparent

The other two ellipses are made progressively more transparent as you move through the other

three quadrants. As a result, you can “see through” the green-to-blue and blue-to-red ellipses. In

other words, you can see the geometric figures that lie beneath them (the other ellipses and the

large black circle).

Upper-right quadrant

In this quadrant, the blue-to-red ellipse is transparent, but the green-to-blue ellipse and the red-

to-green ellipse are opaque. Neither the large circle nor the red-to-green ellipse can be seen

through the green-to-blue ellipse.

However, both of the other ellipses show through the blue-to-red ellipse in the upper-right

quadrant.

Similar to previous lesson

The material in this lesson is very similar to a previous lesson except for the use of color

gradients in this lesson as opposed to solid colors in the previous lesson. Therefore, I am not

going to discuss the output of this program in detail.

Illustrates rotation and translation

As mentioned in the earlier lesson, this lesson also provides a good illustration of the benefits of

rotation and translation.

Uses the AffineTransform

The task of rotating the ellipses relative to each other and the task of translating them into the

various quadrants was made much easier (even possible) through the use of the

AffineTransform to rotate and translate the ellipses.

Rotation was especially useful in this lesson

The benefits of rotation are particularly significant in this lesson where it was necessary to

specify the coordinates of the ends of each ellipse to create the color gradient. Because this was

accomplished before rotating the ellipses, the task was very easy. Had it been necessary to

specify the ends of rotated ellipses, the task would have been much more difficult.

The normal caveat regarding inches

This discussion of dimensions in inches

on the screen depends on the method

named getScreenResolution()

returning the correct value. However,

the getScreenResolution() method

always seems to return 120 on my

computer regardless of the actual

screen resolution settings.

Will discuss in fragments

I will briefly discuss this program in fragments. The controlling class and the constructor for the

GUI class are essentially the same as you have seen in several previous lessons, so, I won’t

repeat that discussion here. You can view that material in the complete listing of the program at

the end of the lesson.

All of the interesting action takes place in the overridden paint() method, so I will begin the

discussion there.

Overridden paint() method

The beginning portions of the overridden paint() method should be familiar to you by now as

well. So, I am going to let the comments in Figure 1 speak for themselves.

 publicvoid paint(Graphics g){

 //Downcast the Graphics object to a

 // Graphics2D object

 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on

 // the screen based on actual screen

 // resolution.

 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame

 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis

 g2.draw(new Line2D.Double(

 -1.5*ds,0.0,1.5*ds,0.0));

 //Draw y-axis

 g2.draw(new Line2D.Double(

 0.0,-1.5*ds,0.0,1.5*ds));

Figure 1

The large circle

The code in Figure 2 draws the large circle with a border width of 0.1 inches. There is nothing

new here, so I won’t provide an explanation.

//Draw a big circle underneath all of the

// ellipses

g2.setStroke(new BasicStroke(0.1f*ds));

Ellipse2D.Double bigCircle =

 new Ellipse2D.Double(

 -1.5*ds,-1.5*ds,3.0*ds,3.0*ds);

g2.draw(bigCircle);

Figure 2

An ellipse reference variable

Figure 3 simply declares a reference variable of the class Ellipse2D.Double. This reference

variable will be used repeatedly in subsequent code for the instantiation of ellipse objects.

 Ellipse2D.Double theEllipse;

Figure 3

Translation

The code in Figure 4 translates the origin to the center of what was previously the upper-left

quadrant. After this statement is executed, any geometric figure that is drawn centered on the

origin will actually be rendered in the center of what was earlier the upper-left quadrant.

 g2.translate(-1.0*ds,-1.0*ds);

Figure 4

Opaque red-to-green ellipse

The code in Figure 5 draws and fills an opaque ellipse with a red-to-green gradient centered on

the new origin.

 theEllipse = new Ellipse2D.Double(

 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);

 g2.setPaint(new GradientPaint(

 -1.0f*ds,0.0f*ds,Color.red,

 1.0f*ds,0.0f*ds,Color.green));

 //Red to green is not transparent

 g2.setComposite(

 AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,1.0f));

 g2.fill(theEllipse);

Figure 5

The code has been covered in previous lessons, so I won’t discuss it further in this lesson. The

only thing new here is the combined use of GradientPaint and setComposite().

From this point on, everything is pretty much business as usual, so I will terminate the discussion

at this point and refer you to the complete listing of the program at the end of the lesson.

Summary

In this lesson, I have shown you how to use the setComposite() method of the Grapics2D class

along with the AlphaComposite class to control the manner in which new pixel values are

composited with existing pixel values.

The new material in the lesson was the combined use of GradientPaint and setComposite().

The sample program in this lesson concentrates on transparency as a way to demonstrate

compositing pixels.

In addition, you have seen some additional uses for the translate and rotate transforms.

Complete Program Listing

A complete listing of the program is provided in Figure 6.

/*Composite02.java 12/12/99
 Copyright 1999, R.G.Baldwin

 Identical to Composite01 except that it uses gradient
 colors instead of solid colors.

 Illustrates use of the AlphaComposite class to
 achieve transparency with gradient-fill colors.

 Draws a 4-inch by 4-inch Frame on the screen.

 Translates the orgin to the center of the Frame.

 Draws a pair of X and Y-axes centered on the new
 origin.

 Draw a big circle centered on the origin underneath
 all of the ellipses.

 Uses rotation and translation to fill three ellipses in
 each of the four quadrants. The ellipses intersect at
 their center. Each is rotated by 60 degrees relative
 to the one below it. The order is:
 Red to green gradient ellipse on the bottom
 Green to blue gradient ellipse in the middle
 Blue to red gradient ellipse on the top

 TRANSPARENCY
 Upper-left quadrant
 No transparency

 Upper-right quadrant
 Red to green is not transparent
 Green to blue is not transparent
 Blue to red is 50-percent transparent

 Lower-left quadrant
 Red to green is not transparent

 Green to blue is 50-percent transparent
 Blue to red is 90-percent transparent

 Lower-right quadrant
 Red to green is not transparent
 Green to blue is 90-percent transparent
 Blue to red is 90-percent transparent

 Whether the dimensions in inches come out right or
 not depends on whether the method
 getScreenResolution() returns the correct resolution
 for your screen.

 Tested using JDK 1.2.2 under WinNT Workstation 4.0
 **/
 import java.awt.geom.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.image.*;

 class Composite02{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
 }//end controlling class Composite02

 class GUI extends Frame{
 int res;//store screen resolution here
 staticfinalint ds = 72;//default scale, 72 units/inch
 staticfinalint hSize = 4;//horizonal size = 4 inches
 staticfinalint vSize = 4;//vertical size = 4 inches

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();
 //Set Frame size
 this.setSize(hSize*res,vSize*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 publicvoid windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor
 //---//

 //Override the paint() method
 publicvoid paint(Graphics g){
 //Downcast the Graphics object to a
 // Graphics2D object
 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on the
 // screen based on actual screen resolution.
 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame
 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis
 g2.draw(new Line2D.Double(
 -1.5*ds,0.0,1.5*ds,0.0));
 //Draw y-axis
 g2.draw(new Line2D.Double(
 0.0,-1.5*ds,0.0,1.5*ds));

 //Draw a big circle underneath all of the ellipses.

 g2.setStroke(new BasicStroke(0.1f*ds));
 Ellipse2D.Double bigCircle =
 new Ellipse2D.Double(
 -1.5*ds,-1.5*ds,3.0*ds,3.0*ds);
 g2.draw(bigCircle);

 Ellipse2D.Double theEllipse;

 //Translate origin to upper-left quadrant
 g2.translate(-1.0*ds,-1.0*ds);

 //Red to green horizontal ellipse
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.red,
 1.0f*ds,0.0f*ds,Color.green));
 //Red to green is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Green to blue ellipse at 60 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate(Math.PI/3.0);//rotate 60 degrees
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.green,
 1.0f*ds,0.0f*ds,Color.blue));
 //Green to blue is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Blue to red ellipse at 120 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate((Math.PI/3.0));//rotate 60 more degrees
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.blue,
 1.0f*ds,0.0f*ds,Color.red));
 //Blue to red is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Translate origin to upper-right quadrant
 g2.rotate(-2*(Math.PI/3.0));//undo prev rotation
 g2.translate(2.0*ds,0.0*ds);

 //Red to green horizontal ellipse
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.red,
 1.0f*ds,0.0f*ds,Color.green));
 //Red to green is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Green to blue ellipse at 60 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate(Math.PI/3.0);//rotate 60 degrees
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.green,
 1.0f*ds,0.0f*ds,Color.blue));

 //Green to blue is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Blue to red ellipse at 120 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate((Math.PI/3.0));//rotate 60 more degrees
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.blue,
 1.0f*ds,0.0f*ds,Color.red));
 //Blue to red is 50-percent transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.5f));
 g2.fill(theEllipse);

 //Translate origin to lower-left quadrant
 g2.rotate(-2*(Math.PI/3.0));//undo prev rotation
 g2.translate(-2.0*ds,2.0*ds);

 //Red to green horizontal ellipse
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.red,
 1.0f*ds,0.0f*ds,Color.green));
 //Red to green is not transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Green to blue ellipse at 60 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate(Math.PI/3.0);//rotate 60 degrees
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.green,
 1.0f*ds,0.0f*ds,Color.blue));
 //Green to blue is 50 percent transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.5f));
 g2.fill(theEllipse);

 //Blue to red ellipse at 120 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate((Math.PI/3.0));//rotate 60 more degrees
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.blue,
 1.0f*ds,0.0f*ds,Color.red));
 //Blue to red is 90-percent transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.1f));
 g2.fill(theEllipse);

 //Translate origin to lower-right quadrant
 g2.rotate(-2*(Math.PI/3.0));//undo prev rotation
 g2.translate(2.0*ds,0.0*ds);

 //Red to green horizontal ellipse
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.red,
 1.0f*ds,0.0f*ds,Color.green));
 //Red to green is not transparent
 g2.setComposite(AlphaComposite.getInstance(

 AlphaComposite.SRC_OVER,1.0f));
 g2.fill(theEllipse);

 //Green to blue ellipse at 60 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate(Math.PI/3.0);//rotate 60 degrees
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.green,
 1.0f*ds,0.0f*ds,Color.blue));
 //Green to blue is 90-percent transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.1f));
 g2.fill(theEllipse);

 //Blue to red ellipse at 120 degrees
 theEllipse = new Ellipse2D.Double(
 -1.0*ds,-0.25*ds,2.0*ds,0.5*ds);
 g2.rotate((Math.PI/3.0));//rotate 60 more degrees
 g2.setPaint(new GradientPaint(
 -1.0f*ds,0.0f*ds,Color.blue,
 1.0f*ds,0.0f*ds,Color.red));
 //Blue to red is 90-percent transparent
 g2.setComposite(AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER,0.1f));
 g2.fill(theEllipse);

 }//end overridden paint()

 }//end class GUI
 //===============================//

Figure 6

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

-end-

mailto:baldwin@austin.cc.tx.us
http://www.geocities.com/Athens/7077/scoop/onjava.html

