
Java 2D Graphics, The Stroke Interface

by Richard G. Baldwin

baldwin@austin.cc.tx.us

Java Programming, Lecture Notes # 318

March 19, 2000

 Introduction

 What is a Stroke?

 What is a BasicStroke?

 The setStroke() Method

 Sample Program

 End Caps

 Line Joins

 Types of Line Joins

 Dash Patterns and the Miter Limit

 The Circle in the Center

 Summary

 Complete Program Listing

Introduction

In an earlier lesson, I explained that the Graphics2D class extends the Graphics class to provide

more sophisticated control over geometry, coordinate transformations, color management, and

text layout. Beginning with JDK 1.2, Graphics2D is the fundamental class for rendering two-

dimensional shapes, text and images.

Understanding other classes is also required

I also explained that without understanding the behavior of other classes and interfaces such as

Shape, AffineTransform, GraphicsConfiguration, PathIterator, and Stroke, it is not possible

to fully understand the inner workings of the Graphics2D class.

Setter methods

I explained in an earlier lesson that the manner in which Graphics2D renders shapes, text, and

images depends on the current values of several properties of the Graphics2D object. The

values of these properties are controlled using standard setter methods of the class, such as the

following.

 setComposite()

mailto:baldwin@austin.cc.tx.us

 setPaint()

 setRenderingHint()

 setStroke()

 setTransform()

Previous lessons have explained how to use setPaint() and setTransform().

This lesson will show you how to use setStroke() to control how a Graphics2D object renders

strokes.

What is a Stroke?

Here is what Sun has to say about the Stroke interface.

“The Stroke interface allows a

Graphics2D object to obtain a Shape

that is the decorated outline, or stylistic

representation of the outline, of the

specified Shape.

Stroking a Shape is like tracing its

outline with a marking pen of the

appropriate size and shape. The area

where the pen would place ink is the

area enclosed by the outline Shape.

The methods of the Graphics2D

interface that use the outline Shape

returned by a Stroke object include

draw and any other methods that are

implemented in terms of that method,

such as drawLine, drawRect,

drawRoundRect, drawOval, drawArc,

drawPolyline, and drawPolygon.”

A Shape describes a Shape

What this says to me is that the Stroke interface makes it possible to consider the outline of a

Shape object to itself be considered as a Shape object. Once the outline is represented as a

Shape, anything that can be done to a Shape object can be done to the Shape that represents the

outline.

Like tracing with a marking pen

The geometry of the Shape that represents the outline is similar to what you would produce by

tracing the original Shape with a marking pen. Different marking pens would yield different

colors and pen widths.

Could also produce dot-dash patterns

In addition, if you had sufficient artistic talent,

 You could lift and lower the pen to produce various dot-dash patterns.

 You could provide some specific treatment for the ends of the lines.

 You could provide some specific treatment for the vertices where line segments produce

an angle.

Of course, you could do other things as well.

Stroke interface method

The Stroke interface declares a single method named createStrokedShape(). Here is what Sun

has to say about this method.

Returns an outline Shape, which

encloses the area that should be painted

when the Shape is stroked according to

the rules defined by the object

implementing the Stroke interface.

Parameters:

 p - a Shape to be stroked

Returns:

 the stroked outline Shape.

BasicStroke implements the Stroke interface

As of JDK 1.2.2, there is only one class in the API that implements the Stroke interface. The

name of the class is BasicStroke.

Of course, if you need to do so, you can define your own class that implements the Stroke

interface.

What is a BasicStroke?

Here is what Sun has to say about the BasicStroke class.

“The BasicStroke class defines a basic

set of rendering attributes for the

outlines of graphics primitives. These

attributes describe the shape of the

mark made by a pen drawn along the

outline of a Shape object and the

decorations applied at the ends and

joins of path segments of the Shape

object. These attributes include:

 width: The pen width,

measured perpendicularly to the

pen trajectory.

 end caps: The decoration

applied to the ends of unclosed

subpaths or dash segments.

 line joins: The decoration

applied where two path

segments are joined.

 dash attributes: The definition

of how to make a dash pattern

by alternating between opaque

and transparent sections.”

Matches what I said earlier

You will recognize the attributes described here as matching the things that I said you could

accomplish with the marking pen in an earlier paragraph.

The setStroke() Method

Here is what Sun has to say about the setStroke() method.

Sets the Stroke for the Graphics2D

context.

Parameters:

s - the Stroke object to be used to

stroke a Shape during the rendering

process

The bottom line

Here is the bottom line regarding stroke. If you have a Shape object inside an overridden

paint() method, and you would like to render the outline of that object onto an output device,

you can do so by

 Invoking setStroke() on your Graphics2D object, passing a reference to an object of a

class that implements the Stroke interface as a parameter.

 Invoking the draw() method (or some other method that can be used to render the Shape

object) passing the Shape object as a parameter.

You can define your own class

You can define your own class that implements the Stroke interface. If you do so, you must

implement the method named createStrokedShape(), returning a Shape object that represents

the outline of the Shape object that you are rendering.

Or, you can use the BasicStroke class

Or, if the capabilities of the BasicStroke class will serve your needs, you don’t need to define

your own class to implement the Stroke interface. You can simply instantiate an object of the

BasicStroke class and pass a reference to that object to the setStroke() method.

Rendering attributes

The BasicStroke class has several overloaded constructors. By passing specific values as

parameters to the constructor, you control several attributes of the rendering process including:

 width: The pen width, measured perpendicularly to the pen trajectory.

 end caps: The decoration applied to the ends of unclosed subpaths or dash segments.

 line joins: The decoration applied where two path segments are joined.

 dash attributes: The definition of how to make a dash pattern by alternating between

opaque and transparent sections.

The BasicStroke constructor

Before getting into the details of the sample program, let’s take a look at the most complex of the

BasicStroke constructors. Here is what Sun has to say about that constructor.

public BasicStroke(

 float width,

 int cap,

 int join,

 float miterlimit,

 float[] dash,

 float dash_phase)

Constructs a new BasicStroke with the

specified attributes.

Parameters:

 width - the width of the

BasicStroke

 cap - the decoration of the ends

of a BasicStroke

 join - the decoration applied

where path segments meet

 miterlimit - the limit to trim the

miter join

 dash - the array representing

the dashing pattern

 dash_phase - the offset to start

the dashing pattern

With the exception of miterlimit, these are fairly self-explanatory. Later, I will tell you what

another author has to say about miterlimit.

Sample Program

This program, named Stroke01, illustrates all of the attributes controlled by the constructor

parameters listed above except for dash_phase. I will explain that attribute later.

Compile and run the program

You should compile and run this program now so that you can see the screen output while

reading the remaining material in this lesson. If you can’t see the screen output, the text

probably won’t mean a lot to you.

You can copy the program from the end of this lesson into a Java source file, compile it using

JDK 1.2 or later, and then execute it. That should produce a Frame object on your screen.

In case you can't do that, here is a screen shot of the output. However, this image has been

reduced considerably, so much of the detail, including the X and Y axes, is missing.

The GUI is a Frame object

The program draws a four-inch by four-inch Frame on the screen. It translates the origin to the

center of the Frame. Then it draws a pair of X and Y-axes centered on the new origin.

This discussion of dimensions in inches

on the screen depends on the method

named getScreenResolution()

returning the correct value. However,

the getScreenResolution() method

always seems to return 120 on my

computer regardless of the actual

screen resolution settings.

Will discuss in fragments

I will discuss this program in fragments. The controlling class and the constructor for the GUI

class are essentially the same as you have seen in several previous lessons, so, I won’t repeat that

discussion here. You can view that material in the complete listing of the program at the end of

the lesson.

All of the interesting action takes place in the overridden paint() method, so I will begin the

discussion there.

Overridden paint() method

The beginning portions of the overridden paint() method should be familiar to you by now as

well. So, I am going to let the comments in Figure 1 speak for themselves.

publicvoid paint(Graphics g){

 //Downcast the Graphics object to a

 // Graphics2D object

 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches

 // on the screen based on actual screen

 // resolution.

 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame

 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis

 g2.draw(new Line2D.Double(

 -1.5*ds,0.0,1.5*ds,0.0));

 //Draw y-axis

 g2.draw(new Line2D.Double(

 0.0,-1.5*ds,0.0,1.5*ds));

Figure 1

Now things get interesting

The output from this program is somewhat cluttered, and can be confusing. I will be discussing

the material that you see on your screen in five steps. First, I will discuss the material in each of

the four quadrants. Each quadrant illustrates a different stroking concept implemented by the

BasicStroke class.

Then I will discuss the circle in the center.

The upper-left quadrant

Let me draw your attention to the upper-left quadrant that contains three horizontal lines. Each

line is rendered in a different color. Within the set of three, the top line should be red, the middle

line should be green, and the bottom line should be blue.

As you can see, each of these lines has a width of about 0.2 inches. Although it isn’t obvious,

each of the lines has the same specified length. The difference in the actual length of the three

lines has to do with how the end of the line is treated. The exposed ends of each line are

decorated with a specific end cap.

End Caps

The BasicStroke class provides three styles of end caps. Here is a list of the three styles along

with the horizontal line to which they were applied:

 CAP_BUTT – red line

 CAP_ROUND – green line

 CAP_SQUARE – blue line

What does Flannagan have to say?

Here is what Java Foundation Classes in a Nutshell, by David Flanagan, has to say about the

three styles. (Flanagan is referring to constants in the BasicStroke class.)

“The BasicStroke.CAP_BUTT

constant specifies that the line should

have no end cap.

The CAP_SQUARE constant specifies

a rectangular end cap that projects

beyond the end point of the line by a

distance equal to half the line width;

this is the default value for the end-cap

attribute.

CAP_ROUND specifies a semicircular

end cap, with a radius equal to half of

the line width.”

The wider the line, the longer the projection

As you can see from this description, the wider the line, the longer will be the projection at the

end of the line for the latter two end-cap styles.

As you can see from your screen, the actual length of the green and blue lines (including the end-

cap projection) is the same, with each of these lines being longer than the red line by half the line

width on each end.

CAP_SQUARE can lead to confusion

The fact that CAP_SQUARE is the default can lead to confusion if you don’t understand what is

going on.

This means that by default, every line that you draw (whose width is greater than one pixel) will

actually be rendered with a greater length than you specified when you instantiated the Line2D

object.

By default, the total rendered length of the line will be the specified length plus the width.

Red CAP_BUTT

Figure 2 prepares the Graphics2D object to render lines with a width of 0.2 inches (see previous

caveat about dimensions in inches) and a CAP_BUTT end cap, (which is no end cap at all).

 Stroke stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_BUTT,

 BasicStroke.JOIN_BEVEL);//don't care

 g2.setStroke(stroke);

Figure 2

Figure 2 instantiates a new BasicStroke object with these two parameter specifications, and then

passes a reference to that object to the setStroke() method of the Graphics2D object.

(Figure 2 also sets a JOIN_BEVEL but that has no impact on the three lines in the upper-left

quadrant. I will discuss the join styles later.)

Render the red horizontal line

Figure 3 renders a new Line2D.Double with a width of 0.2 inches. Graphics2D uses the width

and end cap specification established by passing the BasicStroke object to the setStroke()

method. Since there are no intersecting line segments, the JOIN_BEVEL has no effect.

 g2.setPaint(Color.red);

 g2.draw(new Line2D.Double(

 -1.5*ds,-1.5*ds,-0.5*ds,-1.5*ds));

Figure 3

Green line with round end caps

Figure 4 is very similar to the previous one. In this fragment, the CAP_ROUND constant is

passed to the BasicStroke constructor, resulting in a horizontal line with round caps on each end.

 stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_ROUND,

 BasicStroke.JOIN_BEVEL);//don't care

 g2.setStroke(stroke);

 g2.setPaint(Color.green);

 g2.draw(new Line2D.Double(

 -1.5*ds,-1.0*ds,-0.5*ds,-1.0*ds));

Figure 4

Blue line with square end caps

Similarly, Figure 5 produces a blue horizontal line with square end caps.

 stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_SQUARE,

 BasicStroke.JOIN_BEVEL);//don't care

 g2.setStroke(stroke);

 g2.setPaint(Color.blue);

 g2.draw(new Line2D.Double(

 -1.5*ds,-0.5*ds,-0.5*ds,-0.5*ds));

Figure 5

Line Joins

One issue that arises when line widths are greater than one pixel has to do with how to treat the

points where the lines intersect to produce vertices. Java 2D deals with this issue using a

technique known as line joins.

Look at the lower-left quadrant

Please concentrate on the lower-left quadrant. This quadrant illustrates the kind of problem that

can arise without the availability of line joins.

The lower left quadrant contains four lines. There are two red lines and two green lines.

An intersection with square end caps

The two red lines begin at the same point and proceed downward at a slight angle to one

another. If your screen display looks like mine, the intersection of those two lines appears to

have ears on the sides with a slight depression on the top.

This is the result of drawing two independent lines (they are not segments of the same Shape)

that begin at the same point and are decorated on the ends with a CAP_SQUARE end cap. This

is shown in Figure 6.

 stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_SQUARE,

 BasicStroke.JOIN_BEVEL);//don't care

 g2.setStroke(stroke);

 g2.setPaint(Color.red);

 g2.draw(new Line2D.Double(

 -1.75*ds,1.5*ds,-1.50*ds,0.5*ds));

 g2.draw(new Line2D.Double(

 -1.50*ds,0.5*ds,-1.25*ds,1.5*ds));

Figure 6

When two lines are joined in this fashion, the appearance of the joint is not pleasing.

An intersection with no end caps

The two green lines show the intersection of two lines with no end caps. While not quite as ugly,

this joint is still not particularly pleasing. These two lines were produced by the code in Figure

7, which is not much different from the previous fragment except for the specification of a

different end-cap style and a different color.

 stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_BUTT,

 BasicStroke.JOIN_BEVEL);//don't care

 g2.setStroke(stroke);

 g2.setPaint(Color.green);

 g2.draw(new Line2D.Double(

 -0.75*ds,1.5*ds,-0.5*ds,0.5*ds));

 g2.draw(new Line2D.Double(

 -0.5*ds,0.5*ds,-0.25*ds,1.5*ds));

Figure 7

You will note that the two green lines appear to be shorter than the two red lines, even though all

four lines were specified to be the same length in their Line2D.Double constructors.

So, what’s the answer to ugly intersections

Now please concentrate on the upper-right quadrant.

As we saw earlier, the constructor for BasicStroke allows you specify a decoration style for the

intersection (or join) of two line segments of the same Shape object.

It is important to note that this capability does not apply to independent lines whose ends just

happen to intersect as in the previous example.

Types of Line Joins

The BasicStroke class provides three styles of joins. Here is a list of the three styles along with

the lines to which they were applied in the upper-right quadrant:

 JOIN_BEVEL – blue lines

 JOIN_MITER – green lines

 JOIN_ROUND – red lines

Here is what David Flanagan, has to say about the three styles.

“The default join style is a mitered join,

represented by the

Basic.Stroke.JOIN_MITER
constant. This value specifies that lines

are joined by extending their outer

edges until they meet.

The JOIN_BEVEL constant specifies

that lines are joined by drawing a

straight line between the outside

corners of the two lines, while

JOIN_ROUND specifies that the

vertex formed by the two lines should

be rounded, with a radius of half the

line with.”

Note that exposed ends of line segments are subject to the application of end caps while the

intersections are subject to the application of line joins.

The miterlimit parameter

When the angle between two line segments is small, the JOIN_MITER style can produce an

undesirable result consisting of a very long pointed decoration at the joint. For that reason, the

constructor for BasicStroke allows you to specify a parameter value to prevent this. Here is

what Flanagan has to say about the miterlimit parameter.

“BasicStroke includes another

attribute known as the miter limit. If

the miter would be longer than this

value times half of the line width, it is

truncated. The default for miterlimit is

10.0.”

I will show you an example of the use of the miterlimit parameter in the bottom-right

quadrant. For the moment, however, please continue to concentrate on the upper-right quadrant.

Blue JOIN_BEVEL with CAP_SQUARE end caps

Figure 8 prepares the Graphics2D object to apply a JOIN_BEVEL to the intersection of any

line segments (belonging to the same Shape object) that are rendered.

 stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_SQUARE,

 BasicStroke.JOIN_BEVEL);

 g2.setStroke(stroke);

Figure 8

Apply the JOIN_BEVEL

Figure 9:

 Instantiates a Shape object consisting of two line segments that intersect at an angle

 Sets the paint property to the color blue

 Draws the outline of the Shape object.

As you can see on your screen output, the join decoration at the intersection is a straight line as

described by Flanagan above.

 GeneralPath gp1 = new GeneralPath();

 gp1.moveTo(0.25f*ds,-1.25f*ds);

 gp1.lineTo(0.50f*ds,-0.25f*ds);

 gp1.lineTo(0.75f*ds,-1.25f*ds);

 g2.setPaint(Color.blue);

 g2.draw(gp1);

Figure 9

Green JOIN_MITER with CAP_ROUND end caps

Figure 10 is very similar, except that it uses round end caps and a miter join.

 stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_ROUND,

 BasicStroke.JOIN_MITER);

 g2.setStroke(stroke);

 GeneralPath gp2 = new GeneralPath();

 gp2.moveTo(0.75f*ds,-0.25f*ds);

 gp2.lineTo(1.00f*ds,-1.25f*ds);

 gp2.lineTo(1.25f*ds,-0.25f*ds);

 g2.setPaint(Color.green);

 g2.draw(gp2);

Figure 10

In this case, you can see that the miter join produces a pointed decoration at the point where the

green line segments intersect.

Red JOIN_ROUND with no end caps

The two red line segments in the upper-right quadrant exhibit a round decoration at the

intersection with no end caps, as created by the code in Figure 11.

 stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_BUTT,

 BasicStroke.JOIN_ROUND);

 g2.setStroke(stroke);

 GeneralPath gp3 = new GeneralPath();

 gp3.moveTo(1.25f*ds,-1.25f*ds);

 gp3.lineTo(1.50f*ds,-0.25f*ds);

 gp3.lineTo(1.75f*ds,-1.25f*ds);

 g2.setPaint(Color.red);

 g2.draw(gp3);

Figure 11

Dash Patterns and the Miter Limit

Now please concentrate on the bottom-right quadrant for an illustration of dash patterns and the

miter limit.

The blue and red line segments illustrate the use of dash patterns. The green line segments

illustrates the use of a miter limit with no dash pattern.

Note that the three geometric figures in the lower-right quadrant are mirror images of the

geometric figures immediately above them, but with the additional dash pattern and miter limit

decorations applied.

Dash patterns

To review, here is how Sun describes dash patterns

 dash attributes: The definition of

how to make a dash pattern by

alternating between opaque and

transparent sections.

Interaction between dash patterns and end caps

What this doesn’t say is that the end cap is applied to each end of each opaque section. As you

will see shortly, this can lead to some confusion due to the fact that the end cap extends the

length of the opaque sections.

The blue and red geometric figures in the bottom right-hand quadrant illustrates this

situation. Each of these two figures has the same dash pattern applied. However, on the blue

figure, the extension of the opaque sections by a CAP_SQUARE tends to fill the transparent

sections.

The red figure, on the other hand, doesn’t apply an end cap so the transparent sections are much

longer than on the blue figure. Obviously, this is something that you can cope with as long as

you understand what is going on.

Interaction between dash patterns and join decoration

The dash pattern can also interact in unpredictable ways with the decoration at the join between

two line segments. This is also illustrated by the blue and red figures in the lower-right

quadrant. In this case, a transparent section occurred coincident with the join decoration causing

the decoration to simply disappear.

Applying the dash pattern

In order to apply a dash pattern, you provide a reference to an array of type float as the fifth

parameter to the constructor for a BasicStroke object.

This array can contain any number of float elements (although it probably makes more sense to

specify them in pairs). Each element specifies the length of one section in a series of alternating

opaque and transparent sections.

One pair was used in this program

In this program, the specification was for repetition of a single pair of sections. The length of the

opaque section was specified to be 0.1 inches. The length of the transparent section is specified

to be 0.3 inches.

That is pretty close to what I see on my screen, for the red figure, but due to the end-cap

extension problem mentioned earlier, that is not what I see for the blue figure. The opaque

sections are much longer than the transparent sections for the blue figure.

Figure 12 shows the code that produced the blue figure.

 stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_SQUARE,

 BasicStroke.JOIN_BEVEL,

 0.0f,//miterlimit doesn't matter

 //Dash pattern

 new float[] {0.1f*ds,0.3f*ds},

 0.0f);//Dash phase

 g2.setStroke(stroke);

 GeneralPath gp4 = new GeneralPath();

 gp4.moveTo(0.25f*ds,1.25f*ds);

 gp4.lineTo(0.50f*ds,0.25f*ds);

 gp4.lineTo(0.75f*ds,1.25f*ds);

 g2.setPaint(Color.blue);

 g2.draw(gp4);

Figure 12

The only thing new in this fragment is the specification of the dash pattern in the array, and the

value for the Dash Phase.

What is a Dash Phase?

In case you don’t want the pattern to begin with the first element in the array, you can provide a

float value for the sixth parameter. This value specifies a distance into the theoretical pattern

that is used as the starting point for the actual pattern. In this fragment, that distance was

specified as 0.0.

The miterlimit

As you can see, the miter for the green figure in the lower-right quadrant was truncated (relative

to that shown for the green figure in the upper-right quadrant).

This truncation resulted from specifying a miterlimit value in the fourth parameter to the

constructor shown in Figure 13. I had a little difficulty coming up with a value for this

parameter that would do the job. I’m not certain that this is the appropriate value for all screen

resolutions, and you may need to experiment with the value for your screen resolution. (If the

green figure in the bottom-right quadrant has a pointed join style, it isn’t working.)

 stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_ROUND,

 BasicStroke.JOIN_MITER,

 .057f*ds);//miterlimit

 g2.setStroke(stroke);

 GeneralPath gp5 = new GeneralPath();

 gp5.moveTo(0.75f*ds,0.25f*ds);

 gp5.lineTo(1.00f*ds,1.25f*ds);

 gp5.lineTo(1.25f*ds,0.25f*ds);

 g2.setPaint(Color.green);

 g2.draw(gp5);

Figure 13

The specification of the miterlimit value is the only thing new in this fragment.

The red figure

The code in Figure 14 produced the red figure in the lower-right quadrant. As mentioned earlier,

the dash pattern for this figure is the same as for the blue figure discussed earlier, even though

they look considerably different on the screen.

 stroke = new BasicStroke(

 0.2f*ds,//width

 BasicStroke.CAP_BUTT,

 BasicStroke.JOIN_ROUND,

 0.0f,//miterlimit doesn't matter

 //Dash Pattern

 new float[] {0.1f*ds,0.3f*ds},

 0.0f);//Dash phase

 g2.setStroke(stroke);

 GeneralPath gp6 = new GeneralPath();

 gp6.moveTo(1.25f*ds,1.25f*ds);

 gp6.lineTo(1.50f*ds,0.25f*ds);

 gp6.lineTo(1.75f*ds,1.25f*ds);

 g2.setPaint(Color.red);

 g2.draw(gp6);

Figure 14

The red figure provides a much closer representation of what you would expect, considering only

the values in the float array and not taking end-cap extension into account.

The Circle in the Center

Finally, that brings us to the circle in the center of the Frame object. The circle was provided as

a capstone for the other things discussed earlier in the lesson.

Figure 15 produces an orange outline of a circle centered on the origin. There are no end-cap

extensions. The dash pattern has an opaque section of 0.2 inches, followed by a transparent

section of 0.1 inches.

 stroke = new BasicStroke(

 0.1f*ds,//width

 BasicStroke.CAP_BUTT,

 BasicStroke.JOIN_ROUND,//don't care

 0.0f,//miterlimit doesn't matter

 //Dash pattern

 newfloat[] {0.2f*ds,0.1f*ds},

 0.0f);//Dash phase

 g2.setStroke(stroke);

 Ellipse2D.Double theCircle =

 new Ellipse2D.Double(

 -0.4*ds,-0.4*ds,0.8*ds,0.8*ds);

 g2.setPaint(Color.orange);

 g2.draw(theCircle);

Figure 15

Note that these section lengths didn’t come out even on the circumference of the circle, so there

is an extra long segment on the right-hand side of the circle. At least, that is the case on my

machine.

The width of the Shape that represents the outline is 0.1 inches.

Summary

In this lesson, I have shown you how to use the following attributes of the BasicStroke class to

produce a Shape object that represents the outline of another Shape object

 width

 end caps

 line joins

 dash patterns

Although I didn’t illustrate it, I also explained how to use the dash phase in conjunction with

dash patterns.

I also provided an illustration that shows why we need line joins to deal with the situation

involving vertices produced by intersecting line segments.

Complete Program Listing

A complete listing of the program is provided in Figure 16.

/*Stroke01.java 12/12/99
 Copyright 1999, R.G.Baldwin

 Illustrates use of the Stroke interface.

 Draws a 4-inch by 4-inch Frame on the screen.

 Translates the origin to the center of the Frame.

 Draws a pair of X and Y-axes
 centered on the new origin.

 Illustrates three types of end caps in upper-left
 quadrant.

 Illustrates connecting lines that
 are not segments of a
 Shape in lower-left quadrant

 Illustrates three types of line joins, along with end
 caps in upper-right quadrant.

 Illustrates dash pattern and miterlimit in lower-right
 quadrant.

 Illustrates application of several
 attributes to a circle
 centered on the origin.

 Whether the dimensions in inches come out right
 or not depends on whether the method
 getScreenResolution() returns the correct
 resolution for your screen.

 Tested using JDK 1.2.2,WinNT Workstation 4.0
 ***/
 import java.awt.geom.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.image.*;

 class Stroke01{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
 }//end controlling class Stroke01

 class GUI extends Frame{
 int res;//store screen resolution here
 staticfinalint ds = 72;//default scale, 72 units/inch
 staticfinalint hSize = 4;//horizonal size = 4 inches
 staticfinalint vSize = 4;//vertical size = 4 inches

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();
 //Set Frame size
 this.setSize(hSize*res,vSize*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 publicvoid windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor
 //---//

 //Override the paint() method
 publicvoid paint(Graphics g){
 //Downcast the Graphics object to a

 // Graphics2D object
 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on the
 // screen based on actual screen resolution.
 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame
 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis
 g2.draw(new Line2D.Double(
 -1.5*ds,0.0,1.5*ds,0.0));
 //Draw y-axis
 g2.draw(new Line2D.Double(
 0.0,-1.5*ds,0.0,1.5*ds));

 //Display all three end cap types in upper-left
 // quadrant Display red CAP_BUTT
 Stroke stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_BEVEL);//don't care
 g2.setStroke(stroke);
 g2.setPaint(Color.red);
 g2.draw(new Line2D.Double(
 -1.5*ds,-1.5*ds,-0.5*ds,-1.5*ds));

 //Display green CAP_ROUND
 stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_BEVEL);//don't care
 g2.setStroke(stroke);
 g2.setPaint(Color.green);
 g2.draw(new Line2D.Double(
 -1.5*ds,-1.0*ds,-0.5*ds,-1.0*ds));

 //Display blue CAP_SQUARE
 stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_SQUARE,
 BasicStroke.JOIN_BEVEL);//don't care
 g2.setStroke(stroke);
 g2.setPaint(Color.blue);
 g2.draw(new Line2D.Double(
 -1.5*ds,-0.5*ds,-0.5*ds,-0.5*ds));

 //Display two lines that connect, but are not
 // segments of a Shape in the lower left
 // quadrant. Illustrates the problems of creating
 // geometric figures with connecting lines that
 // have width.

 //This illustrates the problem with
 // CAP_SQUARE -- red
 stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_SQUARE,
 BasicStroke.JOIN_BEVEL);//don't care
 g2.setStroke(stroke);
 g2.setPaint(Color.red);
 g2.draw(new Line2D.Double(
 -1.75*ds,1.5*ds,-1.50*ds,0.5*ds));
 g2.draw(new Line2D.Double(
 -1.50*ds,0.5*ds,-1.25*ds,1.5*ds));

 //This illustrates the problem with
 // CAP_BUTT -- green

 stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_BEVEL);//don't care
 g2.setStroke(stroke);
 g2.setPaint(Color.green);
 g2.draw(new Line2D.Double(
 -0.75*ds,1.5*ds,-0.5*ds,0.5*ds));
 g2.draw(new Line2D.Double(
 -0.5*ds,0.5*ds,-0.25*ds,1.5*ds));

 //Display all three join types in upper-right
 // quadrant

 //Display blue JOIN_BEVEL with CAP_SQUARE
 stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_SQUARE,
 BasicStroke.JOIN_BEVEL);
 g2.setStroke(stroke);
 GeneralPath gp1 = new GeneralPath();
 gp1.moveTo(0.25f*ds,-1.25f*ds);
 gp1.lineTo(0.50f*ds,-0.25f*ds);
 gp1.lineTo(0.75f*ds,-1.25f*ds);
 g2.setPaint(Color.blue);
 g2.draw(gp1);

 //Display green JOIN_MITER with CAP_ROUND
 stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_MITER);
 g2.setStroke(stroke);

 GeneralPath gp2 = new GeneralPath();
 gp2.moveTo(0.75f*ds,-0.25f*ds);
 gp2.lineTo(1.00f*ds,-1.25f*ds);
 gp2.lineTo(1.25f*ds,-0.25f*ds);

 g2.setPaint(Color.green);
 g2.draw(gp2);

 //Display red JOIN_ROUND with CAP_BUTT
 stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_ROUND);
 g2.setStroke(stroke);

 GeneralPath gp3 = new GeneralPath();
 gp3.moveTo(1.25f*ds,-1.25f*ds);
 gp3.lineTo(1.50f*ds,-0.25f*ds);
 gp3.lineTo(1.75f*ds,-1.25f*ds);

 g2.setPaint(Color.red);
 g2.draw(gp3);

 //Display dash pattern and miterlimit in
 // bottom-right quadrant

 //Display blue JOIN_BEVEL with CAP_SQUARE
 //Dash pattern is one on, three off, but this is not
 // what it looks like with CAP_SQUARE
 stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_SQUARE,
 BasicStroke.JOIN_BEVEL,
 0.0f,//miterlimit doesn't matter
 newfloat[] {0.1f*ds,0.3f*ds},//Dash pattern
 0.0f);//Dash phase

 g2.setStroke(stroke);
 GeneralPath gp4 = new GeneralPath();
 gp4.moveTo(0.25f*ds,1.25f*ds);
 gp4.lineTo(0.50f*ds,0.25f*ds);
 gp4.lineTo(0.75f*ds,1.25f*ds);
 g2.setPaint(Color.blue);
 g2.draw(gp4);

 //Display green JOIN_MITER with CAP_ROUND
 // and miter limit. No dash pattern.
 stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_ROUND,
 BasicStroke.JOIN_MITER,
 .057f*ds);//miterlimit
 g2.setStroke(stroke);

 GeneralPath gp5 = new GeneralPath();
 gp5.moveTo(0.75f*ds,0.25f*ds);
 gp5.lineTo(1.00f*ds,1.25f*ds);
 gp5.lineTo(1.25f*ds,0.25f*ds);

 g2.setPaint(Color.green);
 g2.draw(gp5);

 //Display red JOIN_ROUND with CAP_BUTT
 //Dash pattern is one on, three off again. Looks
 // like it with CAP_BUTT
 stroke = new BasicStroke(
 0.2f*ds,//width
 BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_ROUND,
 0.0f,//miterlimit doesn't matter
 newfloat[] {0.1f*ds,0.3f*ds},//Dash pattern
 0.0f);//Dash phase
 g2.setStroke(stroke);

 GeneralPath gp6 = new GeneralPath();
 gp6.moveTo(1.25f*ds,1.25f*ds);
 gp6.lineTo(1.50f*ds,0.25f*ds);
 gp6.lineTo(1.75f*ds,1.25f*ds);

 g2.setPaint(Color.red);
 g2.draw(gp6);

 //Draw a circle with an orange outline centered
 // on the origin with a dash pattern and
 // CAP_BUTT end caps.
 stroke = new BasicStroke(
 0.1f*ds,//width
 BasicStroke.CAP_BUTT,
 BasicStroke.JOIN_ROUND,//don't care
 0.0f,//miterlimit doesn't matter
 newfloat[] {0.2f*ds,0.1f*ds},//Dash pattern
 0.0f);//Dash phase
 g2.setStroke(stroke);

 Ellipse2D.Double theCircle =
 new Ellipse2D.Double(
 -0.4*ds,-0.4*ds,0.8*ds,0.8*ds);

 g2.setPaint(Color.orange);
 g2.draw(theCircle);

 }//end overridden paint()

 }//end class GUI
 //==============================//

Figure 16

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

-end-

mailto:baldwin@austin.cc.tx.us
http://www.geocities.com/Athens/7077/scoop/onjava.html

