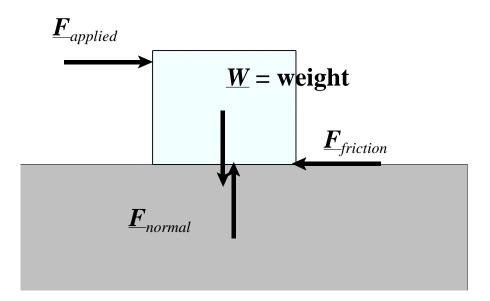

Friction

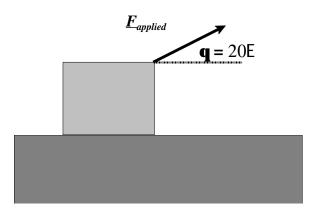
Normal and Tangential Axes

- normal axis is perpendicular to surface
- tangential axis is parallel to surface •

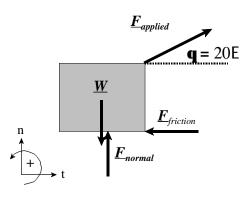


Kinetic $F_{kinetic}$ ' $\mu_{kinetic}$ F_{normal}

Coefficients of Static Dry Friction

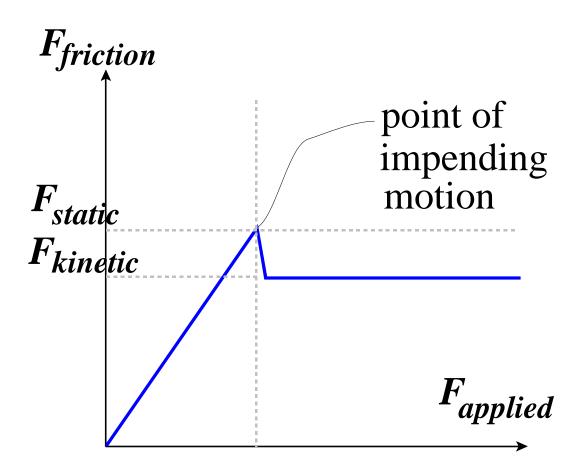

Metal on metal	0.15 - 0.60
Metal on wood	0.20 - 0.60
Metal on stone	0.30 - 0.70
Wood on wood/leather	0.25 - 0.50
Stone on stone	0.40 - 0.70
Earth on earth	0.20 - 1.00
Rubber on concrete	0.60 - 0.90
Nylon on nylon	0.15 - 0.25
Bone on bone (cartilage)	0.10 - 0.20
Steel on Teflon	0.04 - 0.05
Metal of ice	0.02 - 0.05

Forces of Friction:

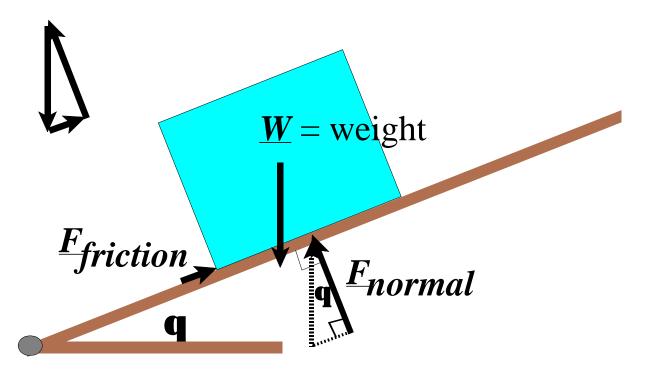


Example:

Space diagram



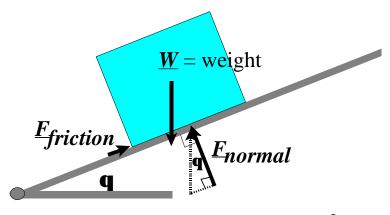
Free-body diagram


Relationship between Applied Force and Friction:

- as applied force increases friction increases until a maximum is reached and slipping occurs
- maximum is called F_{static}
- after body starts to move frictional force drops to a new level called $F_{kinetic}$
- any further increase in the applied force is resisted by $F_{kinetic}$

Empirical Method for Calculating Coefficient of Static Friction:

- cover a load and incline with two surfaces to be tested
- place load on an incline that can be raised at one end
- make sure incline and load are flat and clean
- increase incline until load just starts to slip
- measure angle of incline, θ
- repeat and obtain average angle
- coefficient of static friction = μ_{static} = tan θ
- proof follows



At instant of impending motion: $\boldsymbol{\mu}_{static} \equiv tan \boldsymbol{\theta}$

- coefficient of kinetic friction is more difficult to obtain
- tan of angle that keeps load moving at constant velocity

Angles of Friction

- angle of an incline at the point of **impending motion**
- tangent (tan) of this angle is the same as the coefficient of static friction

At instant of impending motion: $\mu_s = \tan \theta$

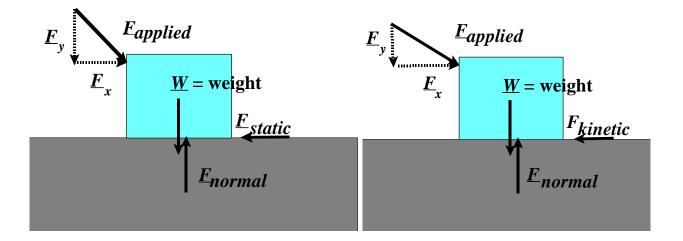
Proof:

$$\sum F_n = 0; \quad F_{normal} - W\cos q = 0$$

$$F_{normal} = W\cos q$$

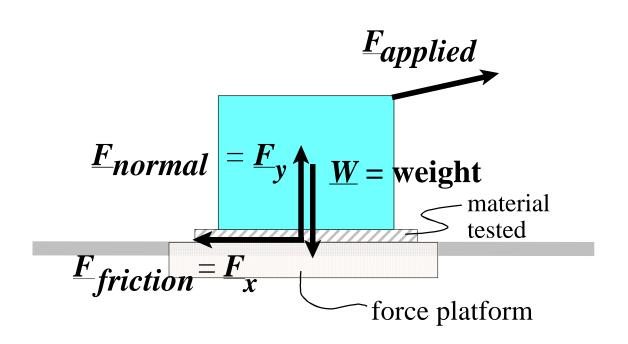
$$\sum F_t = 0; \quad F_{static} - W\sin q = 0$$

$$F_{static} = W\sin q$$


$$\boldsymbol{m}_{static} = \frac{F_{static}}{F_{normal}} = \frac{W\sin q}{W\cos q} = \tan q$$

- to compute the **coefficient of kinetic friction**, lower the incline slowly until the mass just stops-this is the angle of kinetic friction
- as above the tan of this angle is the coefficient of kinetic friction

Frictional States


(a) no friction (b) no motion $(F_x < F_{static})$ $F_{applied}$ W = weight E_{normal} E_{normal} E_{normal}

(c) motion impending $(F_x = F_{static})$ (d) motion $(F_x > F_{static})$

Measuring Friction using Force Platforms

- line load and force platform with surfaces to be tested
- pull load across clean level force platform
- record maximum horizontal force (F_x) at point load starts to move
- μ_{static} = horizontal force / vertical force
- record horizontal force when load is moving
- $\mu_{kinetic} = horizontal force / vertical force$

