Section 4: Kinetics – Forces (Linear Velocities, Accelerations)

Four Properties of Force

- Magnitude
 - How much force
- Direction
 - The way the force is applied along action line
 - Gravity
 - Muscle
- Point of Application
 - Where force is applied
- Line of Application
 - Straight line extending through the point of application

Four Properties of Force

From: Sterner

Mechanical Loads on the Body

- Compression
- Tension
- Shear
- Stress
 - Torsion
 - Bending
 - Combined Loads

How is force calculated?

• Force = mass * acceleration

– Mass is expressed in kilograms

- Acceleration =
$$\underline{v}_{f} - \underline{v}_{i = m/s}^{2}$$

– Velocity = <u>displacement</u> = <u>position2 - position 1</u> change of time time 2 - time 1

Units are in Newtons

 $-1N = 1m/s^2$ in a body of 1 kg mass = kg * m/s²

Force vs Pressure

- Pressure = F/area
- Force acting over a given area
- Units = Ibs/in² or N/m²
- Ex.
 - Helmets
 - Joints

Kinetics

- Joint reaction force 3 times in single leg stance
- 5 times in walking
- Twice during SLR
- Up to 10 times while running

Center of Gravity

- Balance Point
- Conditions Needed
 - Linear forces
 - Rotary Forces
- Location
 - Men = 56% of height
 - Women = 55% of height
 - Height above crotch ~ 6 in.
- Stationary or Mobile?

Friction

- Force that acts at the interface of surfaces in contact
- Occurs in the direction opposite the impending motion
- Static Friction
- Maximum Static Friction
- Kinetic (Sliding) Friction

Examples of Altering Normal Reaction Force

Sample Problem 13.5

The dumbwaiter D and its load have a combined weight of 600 lb, while the counterweight C weighs 800 Ib. Determine the power delivered by the electric motor M when the dumbwaiter (a) is moving up at a constant speed of 8 ft/s, (b) has an instantaneous velocity of 8 ft/s and an acceleration of 2.5 ft/s², both directed upward.

From: Jung

2T - 800 = 0F + T - 600 = 0 $Fv_{D} = 200lb * 8 ft / s = 1600 ft.lb / s$ Power = 2.91hp*if* $a_C = \frac{1}{2}a_D = 1.25$ $800 - 2T = ma_c = (800/32.2) \times 1.25$ $F + T - 600 = (600/32.2) \times 2.5$ $Fv_D = 262.1lb * 8 ft / s = 2097 ft.lb / s$ Power = 3.81hp

From: Jung