Section 36: Spine Biomechanics

Loads on the Spine

- Produced by:
 - Body weight
 - Muscle activity
 - Pre stress exerted by ligaments
 - Externally applied loads
- Constant forward bending moment produced by position of the line of gravity

Loading on the spine

- Abdominal (F1) and back (F2) muscle forces both have compression and shear components
- Adams et al., 2002

Theory of weight bearing

- Nucleus pulpous *imbibes water*
- Develops internal pressure
- Pressure exerted in all directions
 - Lateral forces
 - Against annulus
 - Superiorly and inferiorly directed forces
 - Against end plates
 - Increases stiffness
 - Of end plate and annulus fibrosus

- Nucleus Pulposus
 - Eccentrically positioned posteriorly
 - Young & healthy
 - 50% cross-sectional
 - 90% water, bound to proteoglycans
 - Aging> dessication> increase viscosity> fissuring
 - Pascal's law
 - Fluid mass within closed container> local increase in pressure> transmit around entire side wall (annulus)
 - Young nucleus> even distribution of load
 - Old nucleus> undue concentration on vertebral body edges
 - Small displacement w/ ROM, ball-bearing like
 - Compressive stress predominates

Load Support in the Disc

Pressurization & compressive stress of nucleus pulposus and annulus fibrosus

circumferential **tensile** stress radial **compressive** stress of annulus fibrosus

Theory of weight bearing (cont'd)

when uneven loading takes place

From: Ziv

- Intradiscal Pressure
 - Compressive loads in vivo: 500N standing, 700N sitting
 - Increased to 3000 to 6000N during lifting of moderate weights, decreases with load closer to body
 - Estimate of P = 1.5X compressive load divided by the cross sectional area
 - Disk pressure is usually uniform
 - Pressure lowest in supine position
 - Disk usually does not fail, but end plates fracture

Measurements of In vivo Loads

- Needle pressure transducer
- Calibrated
 - Introduced into nucleus pulpous of cadaveric functional unit
- Inserted in vivo in L3-4 disc

Shear & Tensile Characteristics

- In direct shear tests
 - Shear stiffness in horizontal direction
 - 260 N/mm²
- Spine rarely fails in pure shear
- Similarly under normal physiologic activities
 - Pure tensile loading doesn't occur
 - But annulus undergoes tensile loading during
 - Bending
 - Axial rotation
 - Extension

From: Yang

Influence of Body Position - Static

Influence of the Size of the Object on the Loads on the Lumbar Spine

Influence of Upper Body Positioning on the Loads on the Lumbar Spine During Lifting

Different Lifting Techniques

Low Back Pain

- Most frequent cause of activity limitation in people under age 45
- Direct annual cost of treating low back pain patients
 - \$11.4 billion in 1994
 - Not including the secondary costs of lost work and activity
- Mechanical loading conditions associated with back pain
 - Frequent bending and twisting
 - Heavy physical work
 - Sedentary environment
 - Vibration

Spondylosis (spinal OA)

- degenerative disorder that may cause loss of normal spinal structure and function.
- Although aging is the primary cause, the location and rate of degeneration is individual.
- The degenerative process of spondylosis may impact the cervical, thoracic, and/or lumbar regions of the spine affecting the intervertebral discs and facet joints