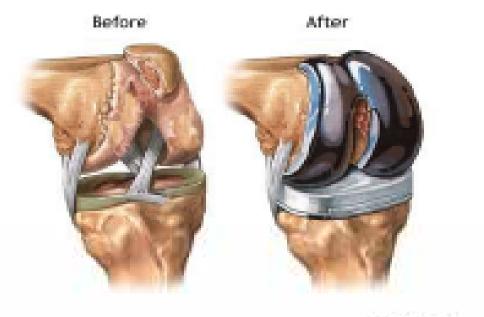
Section 27: Implant Devices and Materials

What joints can be replaced with prosthetics?

- Fingers
- Wrists
- Elbows
- Shoulders
- Temporalmandibular
- Spine
- Hips
- Knees
- Ankles
- Toes



www.medicalmultimediagroup.com www.hipr

www.hipnknee.org

What problems require joint replacement?

- Arthritic pain
- Cartilage damage
- Tumors
- Fractures

www.nlm.nih.gov/

ADAM

Orthopedic Implants

What are the goals of TJR?

- Improve quality of life
- Reduce pain
- Restore function
 - Movement
 - Strength
- Last throughout life

Judet Hip

- Hemiarthroplasty
- Acrylic
- First implant: 1946

http://www.maitrise-orthon.com/comosmaitri/onhoosedic/indet_synth/iodet_synthus_shtml

Smith & Nephew orthopaedics hip portfolio

From: Kelman

Clinical performance

27-8

SPECTRON[™] stem

100% survival rate of the SPECTRON stem at 12 years ¹

97.0% survival rate of SPECTRON stem at 9.6 years ²

99.7% survival rate of SPECTRON EF at 7 yrs ³

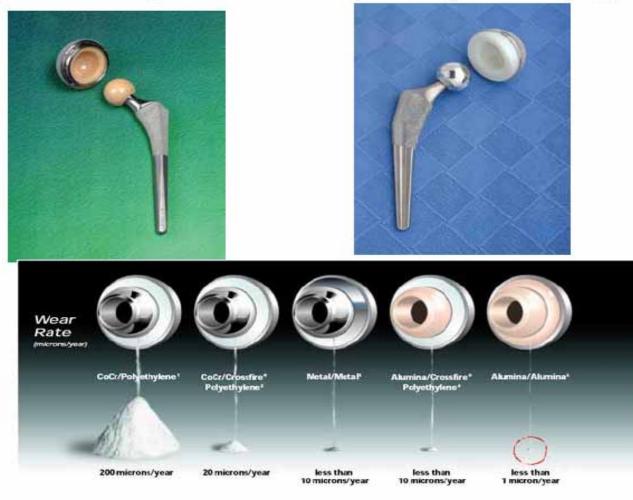
SYNERGY[™] stem

99.5% Survivorship

- 1. The Charnley Versus the Spectron Hip Prosthesis", *The Journal of Arthroplasty Vol. 14 No. 14 1999,* Goran Garellick, et al MD, PhD.
- 2. "Hip Arthroplasty With a Collared Straight Cobalt-Chrome Femoral Stem Using Second Generation Cementing Technique", The Journal of Arthroplasty Vol. 15 No. 2 2000, Ashay Kale, MD et al.
- 3. Swedish National Hip Registry, 2000 Report, Henrik Malchau, MD, PhD
- Bourne, Robert, M.D., F.R.C.S.; Rorabeck, Cecil, M.D., F.R.C.S.; The London Health Sciences Centre Experience: Synergy Tapered Hip System; International Hip Meeting. Prague, Czech Republic. May 2001

From: Kelman

ANTHOLOGY[™] Hip System

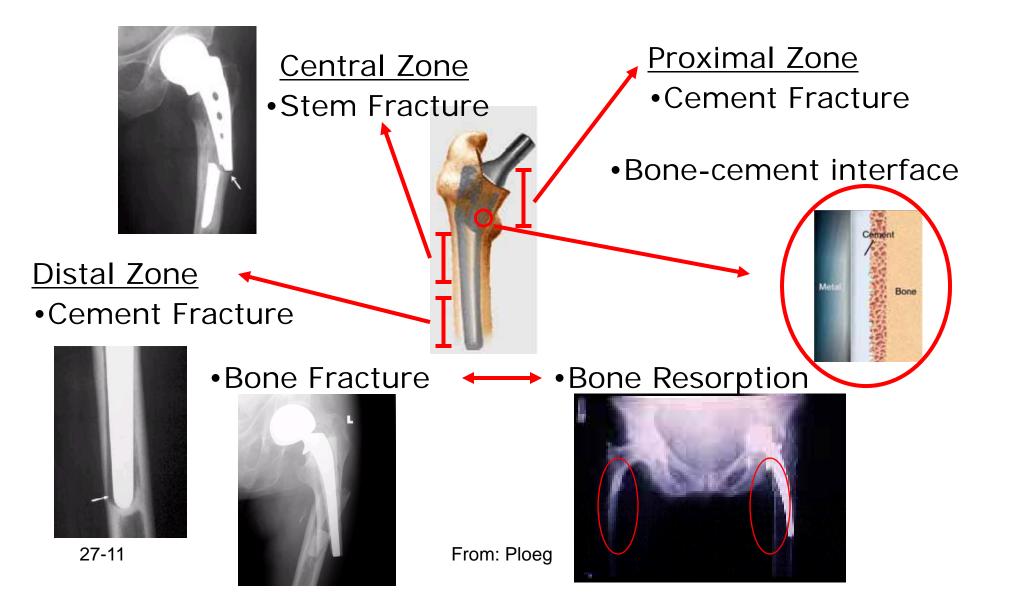

- Value proposition
 - The ANTHOLOGY[™] system provides the surgeon a pressfit implant that is optimum for all femur types
 - It is designed to be MIS friendly, reduce dislocations, and be more bone and tissue conserving than previous primary implant designs

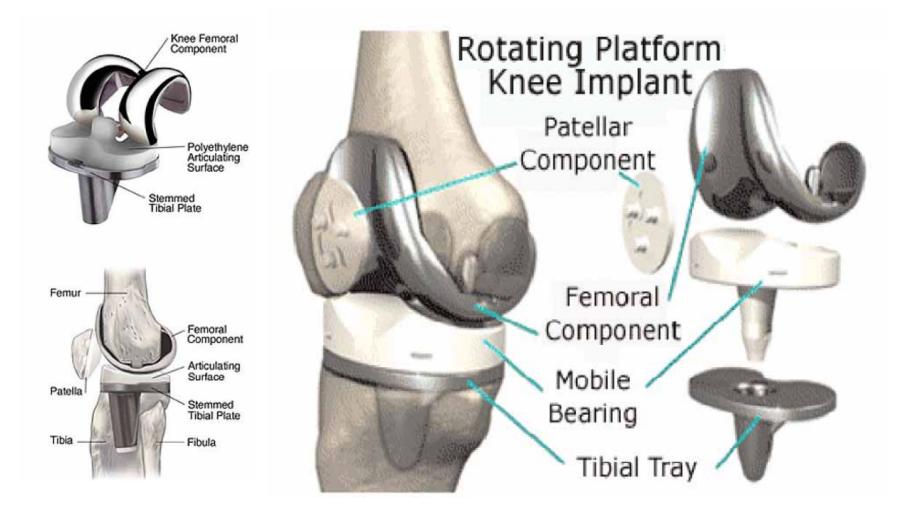
From: Kelman

27-9

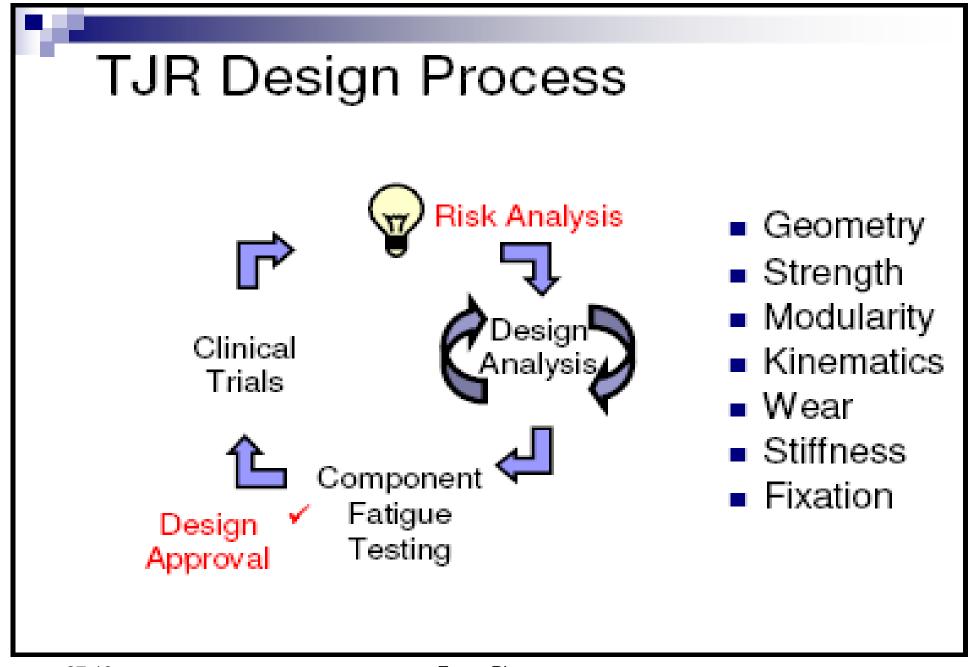
http://www.strykerceramics.com/stryker/about_hip.php

1 Wilmam G. "Cerunies for Tetal Hip Replacement - What a Surgers Should Knew," Orthopedies, Vol. 1996, No. J. February 1998.


2 Howmedica Octaonics White Faper, Izerclare No. 15A21. 3 Schmatzined T, et al. "Long-Duration Metal-on-Metal Total Hip Activoplasties with Lew Wear of the Articulating Statistees." Journal of Arthroplany, Vol. 11, No. 3, 1994.


4 Data enfile at Howmedica Outsoners.

5 Taylor SK. Serekian P., Manley, M. "Wear Ferformance of a Contemporary Alamina: Alamina Bearing Couple Under Hip John Simulation," Trans. 44th Ann. Ng. ORS. 51, 1998.


From: Materials and Textiles

Failure Modes

From: Materials and Textiles

How successful are prosthetic joints?

- Relieve pain
- Restore function
- Most (>90%) last for >10 years

What artificial biomaterials are most commonly used?

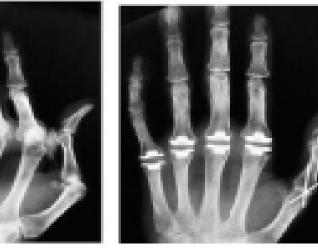

- Metals
 - Stainless steel
 - Cobalt chrome
 - Titanium alloy
- Ceramics aluminum oxide
- Polymers
 - Bone cement (PMMA)
 - UHMWPE (polyethylene)

Material	E (MPa)	Static S (MPa)	Fatigue S (MPa)
Ceramic	300,000		
SS	200,000	480-1,300	240-700
CoCr	220,000	800-1,000	310-950
Ti Alloy	110,000	800-1,500	350-600
РММА	3000	T: 25-40 C: 90-100	14
UHMWPE	500-1000		
Cortical B.	10-20,000	T: 51-133 C:133-195	
Cancel. B.	100-1000	C: 3-10	
Soft Tissue	1		

Ceramics

Issues

Hard and biocompatible but brittle


http://www.questacon.edu.au/innovaus/c1s9_063.html

Polymers

- Bone cement (PMMA)
 - Exothermic
 - Toxic effects of monomer
 - Shrinkage with polymerization
 - Grout, not adhesive
- UHMWPE (polyethylene)
 - Lipid absorption
 - Wear particles
 - Low coefficient of friction and creep resistant

Polymers in Orthopedics

- Swanson Finger
- Wright Medical Technology
- Silicone and Titanium
- First implant: 1969

From: Ploeg

What are key design criteria for artificial biomaterials?

- Restore mechanical function
- Biocompatibility
- Chemically Stable

- Must re-establish mechanical function with healing or replacement:
 - Structural and mechanical criteria
 - Strength
 - Stiffness
 - Fatigue life
 - -Wear
 - Wear debris

- Must be biocompatible
 - No inflammatory response
 - Inflammation causes lymphocyte invasion, vascular occlusion, tissue necrosis, fibrous tissue formation, prosthesis / implant loosening
 - Not carcinogenic
 - Not toxic
 - Not mutagenic, No immunogenic response

- Must not be adversely affected by biological environment, i.e. stable
 - Non-corrosive (metals) to minimize:
 - Stress corrosion
 - Galvanic corrosion
 - Crevice corrosion
 - Lipid absorption (polymers) causing property degradation

- Manufacturing and Use
 - Machinability
 - Ductility (plates must be contoured during use)
 - Cost and supply
 - Requisite size (determined by mechanical properties) versus available space
 - Sterilizable
 - Size of material (i.e. wear debris)
 biocompatibility doesn't fix things