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Forces in Joints

...mechanical science is of all the noblest and most useful, seeing that
by means of this all animate bodies which have movement perform all
their actions...

Leonardo Da Vinci (14521519}

1.1 Introduction

The skeleton is first and foremost a mechanical organ. Its primary func-
lions are 1o transmit forces from one part of the body to another and 1o
protect certain other organs (e.g., the brain) from mechanical forces that
could damage them. Therefore, the principal biologic role of skeletal tis-
sues is to bear loads with limited amounts of deformation. To appreciate
the mechanical attributes that these tissues must have to perform this role,
it is necessary Lo learn something about the forces which whole bones
normally carry. In most cases, these forces result from loads being passed
from the part of the body in contact with a more or less rigid environ-
mental surface (e.g., the heel on the ground when walking) through one
or more bones to the applied or supported load (e.g., the torso). In addi-
tion to the forces transmitted in bone-to-bone contact, muscle and liga-
ment forces act on the bones, and these forces (especially the muscle
forces) are large and important.

Most muscle, ligament, 2nd bone-to-bone forces act in or near the body’s
major diarthroidal joints. The purpose of this chapter is to explain how con-
ventional engineering analysis may be used to estimate joint forces, and w
provide some practical experience in solving such problems.

1.2 Static Analysis of Forces in Joints

Forces in the Elbow Joint

To introduce this subject, we consider the human elbow joint. We choose
this joint because it works more or less as a simple hinge, and becausc it
is Familiar to us, conforming to the image that we acquired in grade school
of the skeleton as a system of levers. Although we use this simplicity in
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solving for the forces, we should spend a few moments examining the
anatomy to appreciate the simplifying assumptions that we are making,

A lateral view of the bones of the elbow is shown in Fig. 1.1A. The
olecranon of the ulna wraps around the distal end of the humerus to
form the major part of the elbow’s hinge joint. The proximal joint sur-
face of the radius articulates with the distal joint surface of the humerus
and also with a cartilage-covered notch (the radial notch) on the lateral
aspect of the ulna; this means there are three articulations in the elbow
joint. These articulations allow for flexion and extension of this joint as
well as pronation and supination’ of the forearm. The radius and ulna
are bound together by the interosseous membrane along the central part
of their length and by several ligaments at their proximal and distal ends
(nol shown). We assume that these structures cause the two forearm
bones to act as one structural unit. We also assume that the wrist joint is
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FiGure 1.1A-D. Anatomical drawings of the elbow joint. A Overall view of the
flexed joint and the biceps inserting primarily on the radius. B, C, D Approximate
locations of the biceps, brachialis, and brachioradialis muscles.

'For the definition of these and other anatomical terms, see a human gross anato-
my text, e.g., Grant’s (Agur, 1991) or Gray's (Williams, 1995).
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stabilized by its musculature so that the hand and forearm flex about the
elbow as a simple hinge joint.

When the elbow is flexed with the palm upward, two muscles are pri-
marily responsible: the biceps and the brachialis (Fig. 1.1B and 1.1C). The
biceps has two heads (i.e., points of origin). The short head originates on the
coracoid process of the scapula, while the long head runs through the shoul-
der joint to attach to the superior lip of the glenoid fossa (the scapular part
of the shoulder joint). The biceps divides distally into a tendon that inserts
on the proximal radius and an aponeurosis (tough band of conneclive tissue)
which blends with other muscles in the proximal forearm (Fig. 1.1B). The
brachialis originates along the anterior surface of the central humerus and
inserts on the proximal ulna (Fig. 1.1C). When the forearm is flexed rapidly,
or a large force must be applied during flexion, the brachioradialis also acts
between the distal humerus and the distal radius (Fig. 1.1D). Other muscles
also cross the elbow and participate in flexion. However, to simplify matters,
and because the present problem is for a static situation, we assume that the
biceps and brachialis muscles act as one in holding the elbow in a flexed
position against the action of a weight held in the hand. We want to find the
force required in the “biceps-brachialis muscle” to support the flexed forearm
and the total force exerted on the distal end of the humerus by the radius
and ulna. These forces are expressed as multiples of the weight in the hand.

To solve this problem and others like it, three steps are necessary:

1. Draw a free-body diagram.
2. Write the equations of static equilibrium.
3. Solve these equations simultaneously to obtain the unknown forces.

We simplify the analysis by assuming that it is two dimensional and that
the forces all act in a sagittal plane containing the humerus and the fore-
arm. The free-body diagram is constructed by isolating the structure being
analyzed such that the internal forces 1o be determined are exposed and
replacing all the forces acting on the structure by vectors. The free-body
diagram for the elbow problem is shown in Fig. 1.2. The forearm is made

FiGure 1.2, Free-body diagram for the elbow force calculation. ] is the joint reaction
force, W is the weight in the hand, and B is the biceps force.
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a free body by “amputating” through the elbow joint, whose internal forces
we wish to reveal, The forearm lies in the x—y plane. The weight in the
hand, the muscle force, and the joint reaction force are represented by the
vectors W, B, and J, respectively.” The joint force is assumed to pass
through a fixed center of rotation for the joint, shown by a dot. The inser-
tion point of the muscle is b meters (m) along the forearm from the joint
center, and the center of gravity of the weight in the hand is w meters from
this point. The equations for static equilibrium in two dimensions are

IM=0
ZF =0 (1.1
ZF =0

where M stands for moments about an arbitrary point, and Fy and F, are
force components in the x- and y-directions. Because, in two dimensions,
there are three such equations, one may solve for three unknown force
components. Alternatively, as usually happens, one may solve for one force
vector and the magnitude of another force of known direction.

For the elbow problem, taking moments about the joint center, the equi-
librium equations are

EM = wW —hBsin @=0 (1.2)
XFy=Bcos @ —J,=0 (1.3)
Y¥F,=Bsin @ -W-/,=0 (1.4)

(Here, any moment of the x-component of B about the joint center is
ignored.) Solving these equations yields

B=wW/bsin @ (1.5

Ji=Bcos @ (1.6)

Jy=Bsin@—-W (.7
fe@=75,w=03m,and =004 m, then B=91 W, [y =23 W, and J,
= 7.8 W. The magnitude of the joint reaction force is J = (/7 + /)" = 8.1

W, and its orientation is arctan(/,/f,) = 74" with respect to the x-axis. Thus,
the muscle and joint reaction forces are eight to nine times greater than the
weight held in the hand. This result is typical of virtually all the joints in
the body in that the skeleton works at a mechanical disadvantage in terms
of force, and as a consequence the forces acting on bones are high relative
to the forces applied by (or 10) the environment

There is, of course, a good reason for this. Muscles can only contract
about 30% of their length. In the case of the biceps, for example, the over-
all length is about 25 ¢m, so the maximum contraction is 7-8 em. The lever

“In this chapter, vector quantities are represented in bold type and scalars (such as
vector magnitudes) in ordinary type.
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action of the forearm magnifies this distance by the ratio w/b in Fig. 1.2,
enabling the hand to move much further (and also much faster). Of equal
importance, the muscles insert proximally on the radius and ulna and do
not create a “web” of flesh across the front of the elbow. Therefore, mag-
nification of motion enables larger movements o be accomplished with a
compact structure. The price that is paid for this compactness and magni-
fication of motion is high forces in the muscles, across the joint surfaces,
and within the bones.

Box 1.1 Historical Note
Giovanni Borelli on the Movement of Animals

Giovanni Alfonso Borelli (1608-1679) was the greatest of early biomechanicians.
He held the chair in mathematics at Pisa in Italy, where he was a close friend of
Malpighi, who was the professor of theoretical medicine. Together, they did much
to pursuade seventeenth-century physicians of the importance of physics in under-
standing medicine and physiology. Borelli’s treatise, De Motu Animalium (On the
Movement of Animals), has been translated into English and is a marvelous testa-
ment to his genius and ability to explain musculoskeletal mechanics clearly and sim-
ply. In the preface to his translation, Maquet points out that later biomechanicians
unwittingly duplicated several of Borelli’s important discoveries. While some of his
results contain errors, it must be remembered that Newton’s laws were not pub-
lished until 1687. Thus, although Borelli understood very well the principle of bal-
ancing moments about a fulcrum, he could not have been expected to fully under-
stand static equilibrium as we do, based on Newton’s laws. One of Borelli's great-
est achievements was the discovery that animals’ joints work at a mechanical dis-
advantage in terms of force. He discusses this in the following excerpt.

Diagram of elbow force problem from Borelli‘s On the Movement of Animals {trans-
lation by Maquet, 1989).

From: Rapoff
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Proposition VIII

“It is commonly thought that Nature raises considerable
weights by using the machines of the muscles with a weak
moving force.

“The magnitude of the vital force of the muscles ... sustains, raises, and
moves not only an arm or a leg, but the whole animal machine, enabling
it even to dance. Besides the mass of the animal, heavy enough by itself,
this force carries, pulls and pushes considerable weights.

“Aristotle...did not recognize the muscles but imagined spirits which
pull and push the limbs. [He] remarked how difficult it would be for the
huge mass of an elephant to be moved...by tenuous spirit or wind. He met
the difficulty by saying that Nature moves the joints and limbs of the ani-
mal by using very small force...and said that the operation is carried out by
way of a lever. Therefore, it is not surprising that huge weights can be
moved...by a small force. Lucretius used the same example....Galen also
says that a tendon is like a lever. He thinks that, consequently, a small force
of the animal faculty can pull and move heavy weights,

“This general opinion seems to be so likely that, to my knowledge, not
surprisingly, it has been questioned by nobody. Who indeed would be stu-
pid enough to look for a machine [in the body] to move a very light weight
with a great force, i.e., ...not to save forces but rather to spend forces? And
if this is rightly considered as stupid, how is it possible that wise Nature,
everywhere looking for economy, simplicity and facility, builds with great
efficiency in animals machines to move, not heavy weights with a small
force, but on the contrary, light weights with almost boundless force? ...1
shall demonstrate that multiple and different machines actually are used in
the motions of animals but that light weights are carried by large and strong
force rather than heavy weights being supported by small force,”

Forces in the Hip Joint

The hip joint is the articulation between the femur and the acetabulum of the
pelvis. The hip is one of the most important joints in the body from a medical
perspective. Especially in aging individuals, overall health is promoted by the
exercise that goes with walking. The ability to walk depends on having a
healthy, painfree hip. Two kinds of diseases, both very common among the
elderly, preferentially affect the hip. Osteoarthritis is the primary reason that
about 200,000 total” hip replacement procedures are performed each year in the
United States, and osteaporasis in the femoral neck results in several hundred
thousand hip fractures each year, virtually all of which require surgical treatment
with a metal fixation device. To better understand the mechanics of the hip and
the demands on the implants used to correct its problems, it is important to
know the forces across the hip during walking and their delermining factors.

*The word “total” refers to the replacement of both the femoral and acetabular sides
of the joint. Sometimes only the femoral side is replaced.
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When one is walking, the lower extremities and other parts of the body
are moving (i.e., accelerating), so the conditions of static equilibrium are
not satisfied. However, most people do not usually walk very vigorously,
so the accelerations are small relative to the forces produced by muscle
pulls and gravity. Therefore, the problem is usually solved as though the
person were simply standing on one leg, assuming that this approximates
the conditions during the “single leg stance phase” of gait, that is, when all
the weight is being carried by one leg. In addition to this assumption, we
assume that the problem is two dimensional, in the frontal plane, and that
only one muscle is acting. If you try to stand on one leg, the force pulling
your center of gravity downward tends to rotate your torso toward the
medial side of the leg you are standing on. The muscles that resist this
movement are the same ones which you use to abduct your thigh when
lying down (i.e., move your lower limb away from the body’s center line).
Again, several muscles act to do this, but we can lump them all together
and simply call them the “abductor muscles.”

Again, the first step in calculating the forces in the joint is to draw a free-
body diagram, “amputating” through the joint in question to “reveal” the
force vectors acting there. In this case we delete the lower extremity and
study the remaining portion of the body. Figure 1.3 shows this situation. It is

Ficure 1.3. Free-body diagram for the calculation of the hip joint force while walk-
ing. The “amputated” leg is the one supporting the body. The leg in the free-body
diagram is not in contact with the ground. B is the weight of the body (minus the
amputated leg), P is the abductor muscle force, and F is the joint reaction force.

From: Rapoff
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important o understand that the subject was standing on the leg that has
been “amputated,” and that the other leg, of which only a portion is shown,
was not touching the ground. The abductor muscle force is represented by
the force vector P. The joint reaction force acling on the middle of the acetab-
ulum in the pelvis is F. The weight of the body, represented by the vector B,
is actually the entire body weight, W, minus the weight of the leg support-
ing the body. Because each lower extremity weighs about 1/6 W, we let B =
5W76. This force acts downward slightly to the right of the centerline of the
body, Taking moments about the center of the acetabula, we have

IM=cP-bB=0 (1.8)
P =(b/c)B = (b/c)5/6)W (1.9)

The lengths of the moment arms & and ¢ have been estimated from antero-
posterior pelvic radiographs. It was found that the b/c¢ ratio ranges between
2 and 3.5. Following the lead of Frankel and Burstein (1970), we choose a
conservative value of 2.4 and obtain the convenient result that P = 2W. That
is, the force required in the abductor muscles to balance the body on the
head of the weight-bearing femur during the stance phase of gait is twofold
body weight.

To solve the rest of the problem, we write the equations for force equi-
librium, assuming that the x-direction is horizontal and the y-direction is
vertical:

(L.10)
(1.11)

S, = F, ~P.= F, - 2Wsin © =0
i, =F,~P,~B=F,-2Wcos @—-5W/6=0

where & = 30" is the angle that the abductor muscle line of action makes
with the p-axis. Because sin 30° = 0.5, the components of the joint reaction
force F are

F. =W and F,=(2cos30 +5/6)W=257W (1.12)

The horizontal force of the femur on the pelvis is equal to body weight,
and the vertical force is 2.5 times as much. The total joint reaction force is
F=(F+ Ff)"'2 = 2.75W. This force acts at an angle to the horizontal ® =
arctan(F,/F,) = 6G8.7".

We have seen that the magnitude of the forces in the hip joint
depends critically on the ratio of the body weight moment arm to the
abductor muscle moment arm. Thus, anything that increases the former
or decreases the latier increases the abductor muscle force required for
gait and consequently the force on the head of the femur as well. People
with short femoral necks have higher hip forces, other things being
equal. More significantly, people with a wide pelvis also have larger hip
forces. This tendency means that women have larger hip forces than men
because their pelves must accommodate a birth canal (Burr et al., 1977).
This fact may be one reason that women have more hip fractures and

From: Rapoff
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hip replacements because of arthritis than men do. It is also conceivable
that this places women at a biomechanical disadvantage with respect to
some athletic activities, although studies do not always show gender dif-
ferences in the biomechanics of running, particularly endurance running
(Atwater, 1990).

Box 1.2 Technical Note
Measurement of Hip Joint Forces In Vivo

To verify the estimates of hip joint forces made using free-body calculations, four
groups of investigators have implanted devices that allowed measurement of hip
joint forces into hip replacement patients (Rydell, 1965, 1966; English and
Kilvington, 1979; Davy et al., 1988; Bergmann et al., 1988, 1993). When
humans are used as experimental subjects, ethical concerns demand that the sub-
ject’s health not be endangered in any way. This ethical mandate has extensive
technical consequences for measurement of hip joint forces. To begin with, a
healthy human subject cannot be used; experimentation must be restricted to a
subject with a deseased or injured hip who will be undergoing replacement of the
proximal femur with a prosthesis by way of treatment for this condition. This con-
dition provides the opportunity for using an instrumented prosthesis that can mea-
sure joint forces instead of a standard prosthesis. However, the instrumented pros-
thesis must be as strong and as durable as a standard one, which imposes impor-
tant constraints on the instrumentation design. Moreover, wires cannot be run
from the prosthesis to the surface of the skin, where they could pose a risk of
infection or other problems. Consequently, the instrument must be fully con-
tained within the prosthesis, with a working space of a few cubic centimeters, and
it must be capable of transmitting data to a receiver outside the body while the
patient walks.

The solution to this technical problem has been to use strain gauges (3 to 12
in number) to measure strains on interior surfaces of the prosthesis, and micro-
electronic circuitry to process the strain signal, which is broadcast as an FM sig-
nal to a receiver held against the skin. The device must be fully calibrated in the
laboratory before insertion into the subject, so that the measured strains can be
converted to force components on the ball or head of the prosthesis. The power
source in the prosthesis used by Davy et al. (1988) was a battery located in the
stern of the prosthesis and activated by a magnetic switch turned on by a mag-
net held outside the patient’s leg (left figure). Because batteries carry a slight
risk of releasing toxic components, and because they have a finite life, other
investigators (Bergman et al., 1993) used an inductive power source. A mag-
netic coil wrapped around the subject’s leg induced current in a receiver coil
within the prosthesis.

One might question whether a patient who has a degenerated joint, has
recently had surgery on it, and is in a laboratory environment, is capable of
walking “normally”—but these are the best data available. The findings of all
four studies are consistent with one another and with the theoretical estimates.
During the single leg stance phase of gait, hip joint forces between 2.5 and 3.3
times body weight were measured (right figure). The highest force recorded was
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Left figure: Exploded view of telemetry electronics inside an instrumented hip prosthesis.
(Reproduced with permission from Davy et al., 1988.) Right figure: Three-dimensional
plot of hip joint force vector during a gait cycle (with crutches). Orientations and lengths
of lines emanating from the surface of the prosthesis head indicate force direction and
magnitude, respectively. (Reproduced with permission from Davy et al., 1988.)

in an individual who was attempting static single-leg balancing; during recov-
ery from a momentary loss of balance, a force of 5.5 body weight was measured
in the hip (Davy et al., 1988).

Clinical Significance of High joint Forces

Because diarthroidal joints work at a mechanical force disadvantage so that
limbs can move far and rapidly with short muscle contractions, high stress-
es are produced in the tissues of the bones and joints. Normally, these tis-
sues carry their loads without causing pain, but various diseases and
injuries can damage the tissues so that the deformations associated with
loading are painful. To some degree, the pain is proportional to the amount
of force carried by the tissues; in other words,

Pain = Force x Disease

There are no nerves in cartilage, and the source of joint pain is poorly
understood, but experience shows that reducing joint forces often alleviates
pain. Often the physician is not able to do much about the disease, so the
first consideration in controlling pain may be to reduce the forces in the
joint. For example, the patient can lose weight, or walk with a cane, and
thereby reduce the forces transmitted across the joint.

From: Rapoff
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1.3 Hip Forces in Human Ancestors

Physical anthropologists have analyzed hip joint forces in skeletons of var-
ious hominids. Of particular interest is Australopithecus because of collat-
eral evidence (footprints) that these individuals may have walked very
much like modern humans. Figure 1.4 is a depiction of the famous
Australopithecuts skeleton known as Lucy. The differences between the
anatomy of the femur and pelvis of Australopithecus and Homo sapiens
include factors that seem to be very pertinent to hip joint force. For exam-
ple, the neck of the Australopithecus femur (stippled in Fig. 1.5, overlaying
the outline of a modern femur) was proportionately longer than ours, but
the bone was smaller overall. The pelvis was also smaller overall, but the
ilium (shown stippled in Fig. 1.6, on one side of a modern human pelvis
of similar size) was more outwardly flared, moving the line of action of the
abductor muscles away from the hip joint. These factors affect the moment
arms of both the abductors and the body weight vector. The analysis of
Lovejoy and co-workers (1973) indicates that the hip joint force in
Austraiopithecus was about 2.5 fold body weight, a value somewhat less

FIGURE 1.4, Artist’s conception of the skeleton of Australopithecus afarensis (“Lucy”)
walking. (Reproduced from McHenry, 1991.)
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FIGURE 1.5. Lucy's proximal femur (stippled) compared to that of Homo sapiens.
{(Redrawn with permission from Lovejoy et al., 1973.)

N

Ficure 1.6. Lucy's ilium (stippled, on right) compared to that of Homo sapiens (on
left). The left and right vertical lines would contain the modern pelvis; notice that
Lucy’s ilium projects well beyond the line on the right. (Redrawn with permission
from Lovejoy et al., 1973.)

than that of modern humans. However, when they performed a similar
analysis on the skeletons of Native Americans excavated at archeological
sites (and thus more comparable in their condition to fragmented
Australopithecus skeletons), they obtained a value of 2.5 for these as well.
Therefore, Lovejoy et al. concluded that Awstralopitbecus and modern
humans experienced similar hip forces. They then considered the pressure

From: Rapoff
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on the head of the femur in these two species. Considering the degree to
which the head of the Australopithecus femur was smaller than ours, and
the estimated difference in body weights, it was concluded that the pres-
sure on the Australopithecus cartilage was about half that on our femoral
heads. However, these estimates are quite tenuous because of the scarcity
and fragmented condition of the Australopithecus skeletons. Later in their
paper, Lovejoy et al. conceded that other observations suggest that the
Australopithecus hip force may have been substantially less than that of
Homo sapiens. Two of the exercises at the end of this chapter allow you to
explore this application of skeletal biomechanics.

Box 1.3 Technical Note
Reproducing Joint Forces in the Laboratory

Cadaver specimens are frequently used to model normal, pathologic, or recon-
structed joints. For these laboratory simulations, researchers often rely on static
calculations to approximate the loading conditions experienced by the joint in life.
For example, a typical experiment examining the stability of a new hip prosthesis
might use cadaveric hip joints implanted with the new component and then
mounted into a testing machine for loading. But in what direction should the load
be applied? What should the load magnitude be? Static analysis can be used to
answer these questions.

Once the investigator has determined the direction and magnitude of the joint
reaction force for a given condition, it is simply a matter of aligning the speci-
men such that the vector of the joint force coincides with the axis of the load
delivery system (left figure). Many important biomechanical studies have been
executed in just this fashion. However, like static analysis itself, this type of sim-
ulation incorporates several assumptions and the results should be interpreted
with caution.

Let us revisit the hip example. A more physiologically correct model might use
the whole pelvis and incorporate abductor muscle forces to reproduce the in vivo
loading environment (middle and right figures). In this case the proper joint reac-
tion vector is produced by simulating abductor contraction using a cable system
attached at the muscle origin and insertion sites. Shortening the cable produces a
moment about the hip that is opposed at the sacrum. In theory, when the vertically
directed force at the sacrum achieves upper-body weight, the joint reaction force at
the hip will be the same as for the extracted hip joint model and the same as that
produced during single-leg stance in life.

In a comparison of these two laboratory methods (Bay et al., 1997a), whole
intact pelves were first loaded under simulated muscle action and the contact
pressure distribution on the articular surfaces was recorded. The hips were then
extracted from the pelvis and reloaded. The direction and magnitude of the joint
reaction torce was identical for both cases, but the distribution of contact pres-
sure within the joint was quite different. Why? Remember, static analysis
assumes rigid bodies but musculoskeletal tissues do not always behave as rigid
bodies. In the intact model the bones of the pelvis were free to flex and deform
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e

The left and right diagrams show two different experimental setups for simulating
hip joint loading using cadaver bones. The vector diagram in the middle is for the
case at right. (Reproduced with permission from Bay et al., 1997a.)

under load, while in the simpler joint model the pelvis became more rigid
because of its altered geometry and the constraints placed upon it.

1.4 The Three-Force Rule

A simple rule is useful in solving certain problems by inspection, or graph-
ically. To illustrate this principle, we consider the forces acting in the knee
joint when a person is walking up stairs. Figure 1.7 shows a free-body dia-
gram of the leg during this situation. It is again assumed that the forces are
confined 1o a single plane, and that static equilibrium is approximated
because the movement is relatively slow. The “ground reaction force” (G)
is now the reaction of the step on the foot, assumed to be directed verti-
cally upward and equal to body weight. This force acts to rotate the leg
counterclockwise, flexing the knee joint. This moment is resisted by the
quadriceps muscles of the thigh, which pull on the patellar ligament and
resist knee flexion. It is assumed that the magnitude of this force L is
unknown, but that its direction can be obtained from drawing a line

From: Rapoff
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G

FIGURE 1.7. Partial free-body diagram of leg and foot to illustrate the three-force rule.
G is ground reaction force, L is patellar tendon force, Pis the point where their lines
of action meet, and Q is the point where the joint force acts on the tibia.

between its attachment points on a radiograph. This direction is shown by
the vector L in Fig. 1.7. The question that the three-force rule can answer
is, *What is the direction of the force, R, exerted by the femoral condyles
on the top of the tibia?”

To see what the direction of this force must be, it is only necessary to
realize that the first two forces, L and G, produce no moments about the
point P, where their lines of action meet. Because R is the only other
force acting in the problem, its vector, when extended, must also pass
through the point 2. Otherwise, R would produce a net moment about
P and ZM would not be zero. We know that the vector R must act on a
point Q within the knee joint. To find R’s line of action it is only neces-
sary to construct the line PQ so that it passes through both P and the
place where R acts on the tibia. Once this is done, the problem can be
solved graphically in a second diagram (Fig. 1.8). First, a vertical vector

¢

Figure 1.8, Vector diagram for three-force rule example. G and L are defined in
Figure 1.7, R is the joint reaction force acting at (0 in that figure.
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is constructed having a length proportional to body weight (i.e., the vec-
tor G). Then, a vector of the appropriate length and direction to repre-
sent L is drawn from the head of G. Finally, vector R is drawn from the
head of L to the tail of G so that the three vectors form a closed trian-
gle; this determines the length (magnitude) of R. Note that this graphi-
cal solution to a two-dimensional joint mechanics problem has again
only allowed us to find three unknowns: the magnitude of L and the
magnitude and direction of R. If we had not known the direction of L,
we would not have been able to solve the problem.

1.5 Indeterminate Joint Problems

In the problems we have considered so far, we have limited ourselves
to two-dimensional analyses in which it was possible to solve for three
unknowns. To reduce the number of unknowns to the number of equa-
tions, we had to combine some muscles with others and to ignore oth-
ers. We could have obtained more equations by extending our analy-
sis to three dimensions, but then we would have had to consider
additional muscles as well. All real joints present static equilibrium
problems that are mathematically indeterminate because there are
always more unknowns than equilibrium equations. Thus, to solve for
joint forces more realistically, it is necessary to find more equations to
use in the solution.

To see an example of how this might be done, we return to the elbow
problem. Previously, we noted that the primary flexors of the forearm are
the brachialis and the biceps, and we combined their actions into a single
force vector. Now, we separate these muscle forces. In addition, we
include the third muscle, the brachioradialis (see Fig. 1.1). Table 1.1 shows
the moment arms of the three muscles with respect to the center of rota-
tion of the elbow when it is flexed at 90" (Winter, 1990). It also shows the

TasLe 1.1, Elbow muscle data

Muscle Moment arm, cm PCA, em’
Biceps a=4.0 =46
Brachialis b=34 A=70
Brachioradialis c=75 =15

PCA, physiologic cross-sectional area.
From Winter, 1990.
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physiologic cross-sectional area (PCA) of each muscle. It is approximately
true that the maximal force that a muscle can exert is proportional to its
physiclogic cross-sectional area. Another way to say this is that muscles
have an upper limit to the stress that they can generate within themselves.
Measured maximum stresses vary from 20 to 100 N/cm’, depending on
conditions (isometric or dynamic, parallel or pennate fibers, etc.). We will
use 40 N/em” as a rule of thumb for the maximal stress (Morris, 1948;
Maughan et al., 1983).

With all three muscles in the problem, there are five unknowns (three
muscle force magnitudes and two components of joint force) but still only
three equilibrium equations. We need two other relationships between
the variables 1o obtain a solution. One way to get such additional equa-
tions would be to assume that all three muscles work together to equal-
ize their individual stresses. That is, each muscle force is proportional to
the muscle’s physiologic cross-sectional area. Then the three muscle
forces are

A =ka (biceps)
B =kf (brachialis)
C = ky (brachioradialis)

(1.13)

where @, B, and yare the respective cross-sectional areas and & = 40 N/cm?
is the constant muscle stress. This may be rewritten as
Afe=B/B=Cly (1.14)

which constitutes the two additional equations that were needed. Using
these to substitute for B and ¢ in the moment equilibrium equation,

ZM=dA+ bB+cC—wW=10 (1.15)
one has
A = low/(ae+ b+ cplW =286 W
B = (B/oyd = 436 W (1.16)

C=(yod =093 W

This solution indicates that the biceps, the muscle with the intermediate
cross-sectional area and moment arm, also exerts the intermediate force.
The brachioradialis, which has the largest moment arm and the smallest
cross-sectional area, exerts the least force, and vice versa for the
brachialis. Whether this has anything to do with the actual distribution of
forces in the muscles is debatable! Many other equally plausible, but not
necessarily so mathematically trivial, “additional conditions™ may be
imagined. For example, the force distribution may shift around to give
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different muscle fibers a rest, or to keep the weight from tipping side-
ways in the hand, or both. A number of investigators have speculated
that the body resolves the indeterminacy of such problems by acling to
optimize or minimize some biologically important variable, such as the
total energy required by all the muscles acting. Collins (1993) provides
additional discussion of this subject.

Box 1.4 Technical Note
Surgical Reconstruction of the Hip Joint

Total hip arthroplasty, which involves replacement of the ball and socket of the
hip joint with manufactured components, is one of the most successful surgical
operations developed in this century. The procedure has relieved joint pain and
increased the quality of life for millions of people. Before the development of
successful hip replacement surgery by Sir John Charnley (1973), patients with
debilitating degenerative arthritis of the hip were forced to either suffer with the
condition or undergo hip joint fusion (called arthrodesis). As described in
Section 1.2, the loads imposed on bones and joints are dramatic as a result of
the mechanical disadvantage under which they function. Forces at the hip can
easily exceed fivefold body weight. In addition, the hip joints of an average indi-
vidual experience about a million load cycles (steps) each year. Thus total hip
components should be both strong and durable.

A total hip replacement consists of two parts: a femoral component, the ball,
and an acetabular component, the socket (see figure). Femoral components are
made from high-strength alloys such as cobalt-chrome or titanium, and consist
of a highly polished head atop an intramedullary stem. The stem is inserted into
the canal of the femur and is usually fixed with an acrylic plastic (polymethyl-
methacrylate, PMMA) called bone cement. This material does not actually
cement the implant to the bone, however; it simply fills space so that the fit does
not have to be exact, “grouting” the implant in place. More recent designs uti-
lize a porous stem surface designed for fixation by bone ingrowth. The acetabu-
lar component is fabricated from ultrahigh molecular weight polyethylene, with
or without a metal backing. A design with a metal backing is illustrated. Other
combinations of materials for the bearing surface are sometimes used, including
metal-on-metal, ceramic-on-ceramic, and ceramic-on-polyethylene. The PMMA
and metal-on-polyethylene bearing surfaces innovations were important factors
enabling Charnley to develop a system that featured good material and structur-
al strength, good resistance to fatigue damage, and low friction at the bearing
surface. Careful surgical technique remains important, but with current methods
most patients, being elderly and relatively sedentary, can expect satisfactory per-
formance for 15 years or more.

Despite the operation’s overall success, failures do occur, more frequently in
young, active patients. The high forces imposed on the joint make maintenance of
implant fixation difficult; component loosening and migration are not uncommon.
High joint reaction forces also produce relatively high frictional forces at the
metal-plastic interface. Over time, frictional wear debris, both metallic and poly-
ethylene, elicits biologic responses that resorb bone and may further compromise
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Photograph of modern hip joint replacement prosthesis. Spherical, polished, cobalt-
chromium alloy ball at top articulates with ultrahigh molecular weight polyethylene
socket having a backing of similar metal. The long metal stem is placed inside the
medullary canal of the femur, In this example, the proximal stem and socket back-
ing have porous surfaces designed for bone ingrowth in lieu of using polymethyl-
methacrylate (PMMA) for fixation to the bone.

implant stability. Improving the fixation and wear characteristics of total joint com-
ponents is a major focus of orthopaedic research.






