Section 24: Articular Cartilage Mechanical Properties

Mechanical Behavior

	Lateral Condyle	Patellar Groove
COMPRESSIVE AGGREGATE MODULUS (MPa)	0.70	0.53
POISSON'S RATIO	0.10	0.00
PERMEABILITY COEFFICIENT (10–15m4/N·s)	1.18	2.17

Tensile Force

 <u>Toe region</u>: collagen fibrils straighten out and un- "crimp"
<u>Linear region</u> that parallels the tensile strength of collagen fibrils: collagen aligns with axis of tension

🛏 Failure region

From: Ziv

Creep behavior

Creep of a viscoelastic material under constant loading

Stress rise during a ramp displacement compression of a visco-elastic material and stress relaxation under constant compression

24-4

From: Ziv

Compressive force

 Rate of creep is determined by the rate at which fluid may be forced out of the tissue

•This, in turn, is governed by the <u>permeability and</u> <u>stiffness</u> of the porouspermeable collagenproteoglycan solid matrix

From: Ziv

Compressive force

Copious exudation of fluid at start but the rate of exudation decreases over time from points A to B to C

Compressive force

At equilibrium, fluid flow ceases and the load is borne entirely by the solid matrix (point C)

The sample is compressed to point B and then maintained over time (points B to E)

Increase stress to reach end of compressive phase

Fluid redistribution allows for relaxation phase (points B to D) and matrix deformation

Equilibrium is reached at point E

Prestress in cartilage

 GAG swelling pressure π is resisted by collagen tension to create prestress in the collagen network

24-12

Friction and wear

- Frictional force (F) dependent:
- Normal force (i.e., applied load, W)
 - We must know joint geometry and loading
- Frictional coefficient
 - Surfactant, i.e. surface lubricant
- F = µW

Frictional coefficients

TABLE 2. Coefficients of friction for typical materials

Material combination	Coefficient of friction
Gold on gold	2.8
Aluminum on aluminum	1.9
Silver on silver	1.5
Steel on steel	0.6-0.8
Brass on steel	0.35
Glass on glass	0.9
Wood on wood	0.25-0.5
Nylon on nylon	0.2
Graphite on steel	0.1
loe on ice at 0°C	0.1
UHMWPE on cobalt chrome	0.01-0.05
(artificial joints)	

Adapted from Dowson (50), with permission.

Iatridis

What is the frictional coefficient for cartilage?

TABLE 3. Coefficients of friction for articular cartilage in synovial joints

Investigator	Coefficient of friction	Joint tested
Chamley (36)	0.005-0.02	Human ankle
McCutchen (128)	0.02-0.35	Porcine
shoulder		
Linn (110,111)	0.005-0.01	Canine ankle
Unsworth et al. (190)	0.01-0.04	Human hip
Malcom (122)	0.002-0.03	Bovine shoulder

ME208

Surface roughness

Arithmetic mean deviation

Components	$Pl_{\alpha}(\mu m)$
Plain bearings	
Bearing (bush or pad)	0.25-1.2
Journal or runner	0.12-0.5
Rolling bearings	
Tracks	0.2-0.3
Poling element	0.05-0.13
Secons	0.25-1.0
uticular cartilage	1.0-6.0
Indoorostheses	
Metal (e.g., femoral head)	0.025
Plastic (e.g., acetabulum)	0.25-2.5

Data from Dowson (50).

ME208

24-15

From: latridis

Why is the frictional coefficient of cartilage so low?

- Tissue is mostly water
- Relatively large surface asperities provide
 - Are for surfactants to lay
 - Mechanism for water to be squeezed out of the cartilage...cartilage surfaces are 'floating on water'

Tissue mechanics

- The composition and structure of cartilage determine the tissue mechanical behaviors
- Cartilage tissue mechanics is complex
 - Viscoelastic part solid, part fluid time dependent behavior
 - Fluid flow moving through the matrix
 - Polymeric interactions
 - Nonlinear stress-strain
 - Compression-tension nonlinearities
 - Anisotropic
- We will investigate how to model most of these phenomena this semester

Material models for articular cartilage

- Early: isotropic, linear elastic
 - Doesn't describe time variation of response
- Later: viscoelastic (springs and dampers)
 - Doesn't consider influence of fluid (loss in compression, swelling)
- Later still: poroelastic, biphasic
 Doesn't consider viscous solid, ion effects
- Most recent: biphasic poro-viscoelastic, triphasic theories