Section 24: Articular Cartilage
Mechanical Properties
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Mechanical Behavior
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COMPRESSIVE AGGREGATE 0.70 0.53
MODULUS (MPa)

POISSON’S RATIO 0.10 0.00

PERMEABILITY COEFFICIENT 1.18 2.17
(10-15m4/N-5s)




Tensile Force

Uniaxial tensile loading

[ Promoghycan

1 Young's Modulus = /E
——— ': r__;—f\\[-;':-___{"::},

- —

A s
i W W W

~ _Toe region: collagen

fibrils straighten out and
un- “crimp”

=—_Linear region that
parallels the tensile
strength of collagen fibrils:
collagen aligns with axis
of tension

»—_Failure region

Fallume

TENSILE STRESS, O (F/A)

STRAIN, € (4171 4)

24-3 From: Ziv



Creep behavior

Creep of a visco-
elastic material
under constant
loading
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Compressive force

Proteoglycan Monomer

Fluld Exudate
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- Rate of creep is
determined by
the rate at which
fluid may be
forced out of the
tissue

- This, in turn, is
governed by the
permeability and
stiffness of the
porous-—
permeable
collagen-
proteoglycan
solid matrix
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Copious exudation of fluid at start but the rate of
exudation decreases over time from points Ato B to C
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Compresswe force
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At equilibrium, fluid flow ceases and the load is
borne entirely by the solid matrix (point C)
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Stress Relaxation
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The sample is compressed to point B and then maintained over time
(points B to E)
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Stress Relaxation
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Increase stress to reach end of compressive phase
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Stress Relaxation

Coplous
Tuid exudation
Fluid redistribution
(Ao @xudation)

Equilibrium
deformalion

Displacement

Fluid redistribution allows for relaxation phase (points B to D) and
matrix deformation
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Stress Relaxation
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Equilibrium is reached at point E
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Prestress in cartilage

* GAG swelling pressure « 1s resisted by
collagen tension to create prestress in the

collagen network
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Friction and wear

* Frictional force (F) dependent:

 Normal force (i.e., applied load, W)
— We must know joint geometry and loading

* Frictional coefficient
— Surfactant, i.e. surface lubricant

° F:“W
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Frictional coettficients

TABLE 2 fcient . " What 15 the frictional
- ' coefficient for cartilage?
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Surface roughness

Arthmetic mean deviation
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Why is the frictional coefficient of
cartilage so low?

* Tissue is mostly water

» Relatively large surface asperities provide
— Are for surfactants to lay

— Mechanism for water to be squeezed out of
the cartilage...cartilage surfaces are ‘floating
on water’
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Tissue mechanics

« The composition and structure of cartilage
determine the tissue mechanical behaviors

« Cartilage tissue mechanics is complex

— Viscoelastic — part solid, part fluid — time dependent
behavior

* Fluid flow moving through the matrix
* Polymeric interactions

— Nonlinear stress-strain
— Compression-tension nonlinearities
— Anisotropic
+ We will investigate how to model most of these
phenomena this semester
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Material models for articular
cartilage

« Early: isotropic, linear elastic
— Doesn’t describe time variation of response

 Later: viscoelastic (springs and dampers)

— Doesn’t consider influence of fluid (loss in
compression, swelling)

 Later still: poroelastic, biphasic
— Doesn’t consider viscous solid, ion effects

* Most recent: biphasic poro-viscoelastic, tri-
phasic theories
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