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MECHANICAL PROPERTIES OF ARTICULAR CARTILAGE 
 
 
TENSILE PROPERTIES 
 
The tensile behavior of articular cartilage (AC) qualitatively is much like the other passive soft tissues 
(ligament & tendon) and is dependent on the collagen content and organization.  In fact, similar nonlinear 
constitutive laws for the tensile pseudoelastic response are used, as in the familiar 
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where T is the Lagrange stress, λ the stretch ratio, and α and β constants.  An instantaneous modulus E can 
be found by differentiating this relation with respect to λ, to give 
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Tension stresses can be developed in AC in a manner akin to "hoop tension," as material near a contact 
regions resists expansion.  A physiologically reasonable estimate of tensile stress that can be developed in 
vivo is up to 2.5 MPa.  In any event, tensile tests are fairly easy to perform, as was done by Weightman in 
1976 and later by Woo et al.  Weightman found cartilage specimens to have static strengths of about 20 
MPa and infinite fatigue lives up to stress of 10 MPa.  Woo et al. investigated still smaller specimens on a 
zone by zone basis.  They found that cartilage was stiffer in the superficial tangential zone in the direction of 
collagen fibers (as opposed to the transverse direction).  They further found stiffness to decrease moving 
deeper into AC down to the deep zone. 
 
FRICTION 
 
The coefficient of static friction µs for synovial joints has been measured to be less than 0.01, compared to 
aluminum on aluminum value of about 2.  Thus, for a 700 N person (and just considering body weight to act 
on the knee joints), a anteroposterior (or any other translational direction) shear force of only 3.5 N (less 
than a pound) applied to the femur is necessary to begin moving it relative to the tibia.  Note that friction is 
rate dependent.  Preconditioning the cartilage (as in stretching and warming up in athletic activities) has 
been shown to cause less strain in cartilage for same applied loads. 
 
INDENTATION PROPERTIES 
 
Preparing tiny specimens of (articular cartilage) AC for mechanical testing can be problematic.  In addition, 
since loading of AC in vivo is predominantly through compressive contact between articular surfaces, a 
reasonable method of testing that can achieve this type of loading is indentation testing.  This method can 
simultaneously distinguish heterogeneity in mechanical properties, provided the indentor is small enough.  
Analyses of the mechanics of indentation fall under the broad class of contact problems, which are 
characterized by their nonlinear load-deformation behavior.  In all of the following analyses, AC was 
assumed to be isotropic and homogeneous and the indentor to be cylindrical of radius r with a flat end 
(contrary to what is reported in the Martin et al. chapter).  An elastic modulus E was then computed from 
the analytical expressions and experimental data. 
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Sokoloff (1966) developed a stress analysis for the indentation of a rigid and incompressible half space.  A 
schematic of the problem analyzed is given in the figure at right, in which the applied load is P and the 
indentation depth is d.  The resulting expression for the modulus was found to be 
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An incompressible material is a material that undergoes no volume change when stressed.  
For example, consider the uniaxial stress state such that the only nonzero stress 
component is σ1 = σ.  The dilatation e by definition is the sum of the three normal strains, 
or, here, 
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For an incompressible isotropic material then, the Poisson's ratio must be ½.  With these assumptions, the 
initial modulus (during the first load application after no preconditioning) of AC was found to be about 2.3 
MPa.  Kempson et al (Journal of Biomechanics 1971) later applied a correction factor to the Sokoloff 
solution to account for the AC thickness to determine an initial modulus of 2.25 MPa and an aggregate 
modulus of 0.69 MPa.  The aggregate modulus can be thought of as the steady state or equilibrium modulus 
under a specified load after all fluid movement has ceased. 
 
Hayes (Journal of Biomechanics 1972) supplied the solution to a thin elastic layer of 
thickness h supported by a rigid half space that included a scale factor κ to account 
for the deformation and Poisson's ratio of the elastic layer and the diameter of the 
indentor.  A schematic of this problem is given in the figure at right.  The resulting 
expression for the modulus was found to be 
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An initial modulus of 1.68 MPa and an aggregate modulus of 0.56 MPa was then determined when a 
Poisson's ratio of 0.4 was assumed for the AC. 
 
BIPHASIC THEORY 
 
Background 
 
When articular cartilage (AC) is loaded, for example, when a cadaveric tibial plateau is depressed with a 
blunt instrument, drops of fluid can be observed to appear on the surface.  Clearly, fluid is moving within 
and out of the tissue, contributing to its mechanical (and viscoelastic) behavior.  Many researchers have 
conducted controlled tests to determine the interaction between AC deformation and fluid movement, which 
eventually led to the development by Mow and associates of the biphasic theory of AC. 
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Basic Assumptions 
 
The basic assumptions behind the biphasic theory are as follows. AC is assumed to consist of two 
incompressible phases:  (1) a soft porous solid phase (to represent the collagen) whose pores are filled with 
(2) a fluid phase (to represent the water).  The pores are assumed to be interconnected so that the fluid flows 
throughout the tissue with resistance offered by the intrinsic permeability of the tissue.  No closed, fluid 
filled pores exist to bolster the ability of the solid phase to support load.  Any observed  volume change of 
the tissue results from fluid exudation or imbibition. 
 
Permeability 
 
The hydraulic permeability coefficient (aka apparent permeability or simply permeability), denoted by k 

with SI units of 
4m

N s
⎡ ⎤
⎢ ⎥⋅⎣ ⎦

, is a measure of the resistance to fluid movement offered by a porous material.  It 

represents the distance a unit volume of fluid moves through a unit area of material under the action of a 

unit pressure in one unit of time.  Thus, in SI units, a porous material with a permeability of 
4m1

N s
k =

⋅
 is 

interpreted as a material that allows 1 m3 of fluid to move 1 m in 1 s through an area of 1 m2 under the 
action of a pressure of 1 Pa.  Clearly a length scale based on meters for volume, area, and distance are large 
for AC, so it is not expected for permeabilities in SI units to be on the order of whole numbers.  In fact, they 
are quite small.  For AC (and many materials), permeability is a function of deformation, so that as the 
tissue compacts the permeability decreases (eventually becoming impermeable, for which k = 0). 
 
Important Tests 
 
Although the development of the biphasic theory is beyond the scope of our course, it is important to 
consider the solutions offered by it for mechanical tests traditionally performed for constitutive model 
development. 
 
Confined Compression Tests.  In confined compression tests of AC, a cylindrical specimen of initial 
height h is placed in a cylinder with solid metal walls and a solid bottom (Figure 1).  Keep in mind that the 
initial height of these types of specimens are at most a few millimeters.  A highly porous, disk shaped platen 
of cross sectional area A is used to supply the compression (like a piston), in the form of an applied load F(t) 
or an applied deformation u(t); if one is applied, the other is measured.  A stress may be defined as σ(τ) = 
F(t)/A and a strain ε = u(t)/h.  The resulting load-deformation data are fit with the solutions provided by the 
biphasic theory to estimate the material constants k and HA. 
 
Confined Compression Creep Test.  In the creep version of the confined compression tests, the usual step 
function load F(t) = F0H(t) is applied to a specimen so that σ(t) = σ0H(t) where F0 = σ0A, and the resulting 
deformation u(t) is recorded.  The load-deformation solution provided by the biphasic theory is 
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Note that initially (t = 0) 
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because of the convergence of the infinite series.  Also note that for the steady state condition (t → ∞) 
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which is a Hooke's Law type relation (in compliance form) between strain and stress. 
 
Confined Compression Relaxation Test.  Similar relations are provided by the biphasic theory for the 
relaxation version of the confined compression tests.  The solution presented here represents the manner in 
which an actual relaxation test is performed:  by ramping up the deformation u(t) over a finite period of time 
from t = 0 to t = t0 at a rate of u , then holding the deformation constant and recording the load relaxation 
F(t).  The resulting load-deformation solution provided by the biphasic theory and valid over t ≥ t0 is 
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Note that for the steady state condition (t → ∞) 
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which is a Hooke's Law type relation (in stiffness form) between stress and strain.  The stress response 
(Figure 2) is typical for a relaxation test, and reflects the fluid movement and solid compaction that occurs. 

Figure 1.  Schematic of confined compression test set up.  The sample can not extend laterally due to the 
rigid test chamber. 
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Figure 2.  Schematic of confined compression relaxation test data.  At bottom left, a plot representing a 
realistic displacement input, ramping to a constant compression in a finite time t0.  At left top left, a plot 
representing the stress response.  At right, schematics of the articular cartilage test specimen at various 
times during the test.  The horizontal bars are meant to indicate strain within the tissue.  Initially (point 
0), the tissue is unloaded.  During application of the compressive displacement (points A & B), fluid is 
flowing up through the tissue and through the porous platen; the solid matrix is compacting.  The stress 
response in the phase is a "softening" response, i.e., the tissue is becoming less stiff because the fluid 

exudation means there is less fluid to resist the applied load.  As the displacement is held constant 
(points C & D), the fluid internally redistributes, until equilibrium is reached (point E and beyond). 
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