VISCOELASTICITY

INTRODUCTION

- When real materials are stretched, rearrangements within a real material take place over a finite length of time in response to stretch.
- These rearrangements can take place:
 - o nearly instantaneously, as when water is made to flow, or
 - o seemingly forever, as when steel is slightly stretched at room temperature.
- We observe the material response over a finite length of time.
- A dimensionless measure (after Marcus Reiner, 1886 1976, Austrian born Israeli civil engineer) of the response is the <u>Deborah number</u>, $N_D = \frac{\text{material response time}}{\text{observation time period}}$, such that:
 - \circ $N_D \rightarrow 0$ for a purely viscous response
 - $\circ \quad N_D \to \infty \text{ for a purely elastic response}$
 - \circ N_D~1 for a viscoelastic response.
- Viscoelastic deformations are characterized by their
 - o time dependence
 - o loading history dependence
 - o lack of one to one correspondence between stress and strain.
- We will first learn about linear viscoelasticity applicable to infinitesimal deformations.
- Later, we will consider finite deformations of soft tissues within the framework of a "quasilinear" viscoelasticity theory.

Observed Viscoelastic Characteristics

- Unless otherwise noted, our focus will be on uniaxial extension.
- We must master the terminology of viscoelasticity.
- Simple models will help us master idealized responses.

Characteristic	Excitation	Response
Creep	constant stress (load)	increasing strain (deformation)
	$\overset{\sigma}{\overbrace{\qquad}}_{t}$	
Relaxation	constant strain	decreasing stress
		$\overset{\sigma}{\qquad$
Recovery	decrease stress	decreased strain
	$\sigma \uparrow \qquad $	
Rate Effects	increase stress (or strain) rate	increased instantaneous stiffness
	$\sigma \uparrow \qquad $	$\sigma \uparrow \qquad $

• Another observed characteristic is hysteresis: loading and unloading curves not identical

Linear Viscoelasticity

- Perform (infinitely) many relaxation tests at various values of constant strain $(\varepsilon_0)_i$
 - Mathematically represented by $\varepsilon_i(t) = H(t)(\varepsilon_0)_i$ where H(t) is the Heaviside step function
 - Define <u>relaxation modulus</u> as $E_i(t) \equiv \frac{\sigma_i(t)}{(\varepsilon_o)_i}$
- Material is <u>linearly viscoelastic</u> if $E_1(t) = E_2(t) = \dots = E_i(t) = E(t)$
- An analogous linear viscoelastic <u>creep compliance</u> exists such that $J(t) = \frac{\varepsilon(t)}{\sigma_0}$