Section 20: Fracture Mechanics and Healing

Basic Biomechanics

Bending Compression Torsion

- Bending
- Axial Loading
 - Tension
 - Compression
- Torsion

Figure from: Browner et al: Skeletal Trauma 2nd Ed, Saunders, 1998.

Material vs Structural Behavior (cont)

✤ Flexural Loading.

From: Al-Tayyar

- Bending load:
 - Compression strength greater than tensile strength
 - Fails in tension

Figure from: Tencer. Biomechanics in Orthopaedic Trauma, Lippincott, 1994.

From: Le

- Combined bending & axial load
 - Oblique fracture
 - Butterfly fragment

Figure from: Tencer. Biomechanics in Orthopaedic

Trauma, Lippincott, 1994.

Ski boots

A, Distribution of compressive and tensile stresses in a tibia subjected to three-point bending. B, Contraction of the triceps surae muscle produces high compressive stress on the posterior aspect, neutralizing the high tensile stress.

From: Vanwanseele

Bone Healing

- Direct
 - Primary bone healing
 - Cutting cones
 - Seen with absolute stability
- Indirect
 - Secondary bone healing
 - Callus formation; resorption at fx site;
 - Seen with relative stability

Indirect Stages:

- Inflammation
 - 1-7 days
- Soft callus
 - 3 weeks
- Hard callus
 - -3-4 months
- Remodeling

 months => years

Relative Stability

- Motion between fracture fragments that is compatible with fracture healing.
- Motion is below the *critical strain level* of tissue repair.
- Promotes *indirect* bone healing!
- Examples:
 - IM nails
 - Bridge plate
 - External Fixator

Absolute Stability

- **Compression** of two **anatomically** reduced **fracture fragments**.
- No displacement of the fracture under functional load.
- Promotes *direct* bone healing!
- Examples:
 - Lag screw
 - *Plate* => compression, buttress, neutralization
 - Tension band

Bone Development and Healing

The process of bone development is called *ossification*. There are two types of ossification: *endochronal* and *intramembranous*.

Bone healing occurs in stages: fracture, granulation, callus, lamellar bone, and normal contour.

From: Ames

From: Imholtz

- A. During the next several months, the bony callus is continually remodeled.
- B. Osteoclasts work to remove the temporary supportive structures while osteoblasts rebuild the compact bone and reconstruct the bone so it returns to its original shape/structure.

From: Imholtz

Biomechanics Intact/Healing Bone

- Hierarchical structure
 - Collagen embedded with apatite
 - Decreased modulus with decreased apatite:collagen ratio
- Fibrils organized to resist force
 - Fibers organized into lamellae
 - Concentric Lemellae make an Osteon
 From: Justice

20-16

Strength/Stiffness

- Strength proportional to density²
- Modulus proportional to density^(2 to 3)
- Age: increased modulus, bending strength from child to adult, then decrease
- Holes/defects weaken bone (round better than square)
- Strength proportional to
- ²⁰⁻¹⁷ diameter⁴

From: Justice

(A) Rel strength/mm² 5/3 Rel rigidity/mm² 2

(B) Rel strength/mm² 1 Rel rigidity/mm² 1

(C) Rel strength/mm² 1/2 Rel rigidity/mm² 1/4

- Fracture Callus
 - Moment of inertia proportional to r⁴
 - Increase in radius by callus greatly increases moment of inertia and stiffness

$$\frac{\overline{\mathbf{R}}}{\mathbf{Y}} = - (\mathbf{R}^4 - r^4)/4$$

Figure from: Browner et al, Skeletal Trauma

20-18

2nd Ed, Saunders, 1998.

0.5 x weaker

From: Le Figure from: Tencer et al: Biomechanics in Orthopaedic Trauma, Lippincott, 1994.

- Time of Healing
 - Callus increases with time
 - Stiffness
 increases with
 time
 - Near normal stiffness at 27 days
 - Does not correspond to

Figure from: Browner et al, Skeletal Trauma,

2nd Ed, Saunders, 1998.

20-19 radiographs

From: Le

Remodeling of Bone

- Wolff's Law
- Remodeling balance between bone absorption of osteoclasts and bone formation by osteoblasts
 - osteoporosis –increase porosity of bone, decrease in density and strength, increase in vulnerability to fractures
 - piezoelectric effect electric potential created when collagen fibers in bone slip relative to one another, facilitates bone growth
 - use of electric and magnetic stimulation to facilitate bone healing