FRACTURE MECHANICS

MICHAEL ALMS, SASKATOON, CANADA

Former/v Orthopaedic Registrar, Bristol Royal Infirmary

The shaft of a long bone may break in a variety of ways in response to different types Formerly Orthopaedic Registrar, Bristol Royal Infirmary

The shaft of a long bone may break in a variety of ways in response to different types

of violence. Four basic types of linear fracture may be recognised (Fig. 1): The shaft of a long bone may break in a variety of ways in response to different types
of violence. Four basic types of linear fracture may be recognised (Fig. 1): transverse,
oblique transverse, spiral, and oblique. The v Standard works on engineering do not explain satisfactorily the mechanism by which fractures are produced; to the engineer the actual mode of failure of a material is of

fractures and comminution that tend to obscure the primary failure, but with care this can
nearly always be discerned.
Standard works on engineering do not explain satisfactorily the mechanism by which
these fractures are nearly always be discerned.

Standard works on engineering do not explain satisfactorily the mechanism by which

these fractures are produced; to the engineer the actual mode of failure of a material is of

less interest t standard world
these fractures are
less interest than its
theory on the stre
traumatic surgery.
The following In the following calculations are applicable to a homogeneous brittle material. Adult cortical bone has a brittle matrix but is strengthened by an intricate fibrous network. To a

cortical bone has a brittle matrix but is strengthened by an intricate fibrous network. To a large extent it behaves as a uniform brittle solid, but sometimes the grain of the fibrous network. To a large extent it behaves large extent it behaves as a uniform brittle solid, but sometimes the grain of the fibrous helical. Adult cortical bone has a brittle matrix but is strengthened by an intricate fibrous network. To a large extent it behaves The following calculations are applicable to a homogeneous brittle material. Adult cortical bone has a brittle matrix but is strengthened by an intricate fibrous network. To a large extent it behaves as a uniform brittle s Fire following calculations are applicable to a homogeneous britte material. Adult cortical bone has a brittle matrix but is strengthened by an intricate fibrous network. To a large extent it behaves as a uniform brittle s Lange extent it behaves as a uniform brittle solid, but sometimes the grain of the fibrous structure is found to modify the expected fracture. Quantitative examination of the strength of bone is made virtually impossible b structure is found to modify the expected fracture. Quantitative examination of the strength
of bone is made virtually impossible by variations in form and composition of the material.
A solid material may be subjected to may cause linear fracture but this will be brought about as failure in a plane of shearing.

FIG. ¹ Four basic types of linear fracture: transverse, oblique transverse, spiral, oblique.

It will be found that these conform to the four types of fracture mentioned in the opening
162
THE JOURNAL OF BONE AND JOINT SURGERY **EFFECTS OF DIFFERENT TYPES OF STRESS**
The possible ways in which a long bone might fail by linear fracture are considered EFFECTS OF DIFFERENT TYPES OF STRESS
The possible ways in which a long bone might fail by linear fracture are considered
below, and the type of fracture that would theoretically be produced in each case is considered.
It w EFFECTS OF DIFFERENT TYPES OF STRESS

The possible ways in which a long bone might fail by linear fracture are considered

leon, and the type of fracture that would theoretically be produced in each case is considered.

It FRACTURE MECHANICS 163
paragraph. A careful assessment of the histories of the mechanism of injury in accident cases
will verify the theory of fracture mechanics propounded. FRACTURE MECHANI
paragraph. A careful assessment of the histories of the
will verify the theory of fracture mechanics propounde
Simple traction—This type of stress is most unlikely to

FRACTURE MECHANICS 163

paragraph. A careful assessment of the histories of the mechanism of injury in accident cases

will verify the theory of fracture mechanics propounded.
 Simple traction—This type of stress is most paragraph. A careful assessment of the histories of the mechanism of injury in accident cases
will verify the theory of fracture mechanics propounded.
Simple traction—This type of stress is most unlikely to be exerted on t paragraph. A careful assessment of the instories of the inecnanism of injury in accident cases
will verify the theory of fracture mechanics propounded.
Simple traction—This type of stress is most unlikely to be exerted o **Simple traction—This type of stress is most unlikely to be exerted on the shaft of a long bone to the point of failure. Even when the limbs are resisting a tension force, muscle contraction is such that the skeleton is su** Simple traction—This type of stress is most unifiely to be exerted on the shart of a
to the point of failure. Even when the limbs are resisting a tension force, muscle c
is such that the skeleton is subjected to compressio It is such that the skeleton is subjected to compression rather than tension. We see this type of fracture in the medial malleolus when a fracture-dislocation of the ankle occurs in eversion.
The fracture line is transvers It is such that the skeleton is subjected to compression rather than tension. We see this type of
fracture in the medial malleolus when a fracture-dislocation of the ankle occurs in eversion.
The fracture line is transvers

The fracture in the medial maneous when
The fracture line is transverse and is t
Simple compression—If a pillar be su
linear shear fracture, more or less pla
axial compressing force can be re-
solved, at any angle, into a

The nacture line is transverse and is
Simple compression—If a pillar be s
linear shear fracture, more or less p
axial compressing force can be re-
solved, at any angle, into a tangential
or shearing force and a normal or Simple compression—if a pinal be subjet
linear shear fracture, more or less plane
axial compressing force can be re-
solved, at any angle, into a tangential
or shearing force and a normal or
compressing force (Fig. 2). It axial compressing force can be re-
solved, at any angle, into a tangential
or shearing force and a normal or
compressing force (Fig. 2). It is
easily shown that the shear stress solved, at any angle, into a tangential become solved, at any angle, into a tangential
or shearing force and a normal or
compressing force (Fig. 2). It is
easily shown that the shear stress
becomes greatest at 45 degrees, and
one might expect failure to occur in or shearing force and a normal or
compressing force (Fig. 2). It is
easily shown that the shear stress
becomes greatest at 45 degrees, and
one might expect failure to occur in
that plane. However, the comcompressing force (Fig. 2). It is
easily shown that the shear stres
becomes greatest at 45 degrees, an
one might expect failure to occur i
that plane. However, the com
pressive factor modifies the tendenc easily shown that the shear stress
becomes greatest at 45 degrees, and
one might expect failure to occur in
that plane. However, the com-
pressive factor modifies the tendency
for the material to disrupt. It can be one might expect failure to occur in
that plane. However, the com-
pressive factor modifies the tendency
for the material to disrupt. It can be
shown that as the plane increases for the material to disrupt. It can be shown that as the plane increases towards the vertical the intensity of that plane. However, the com-
pressive factor modifies the tendency
for the material to disrupt. It can be
shown that as the plane increases
towards the vertical the intensity of
the shear factor is at first only slightly for the material to disrupt. It can be
shown that as the plane increases
towards the vertical the intensity of
the shear factor is at first only slightly
diminished while the intensity of the
compressive factor falls off r shown that as the plane increases
towards the vertical the intensity of
the shear factor is at first only slightly
diminished while the intensity of the
compressive factor falls off rapidly.
A plane of greatest weakness oc Free Sear factor is at first only slightly
the shear factor is at first only slightly
diminished while the intensity of the
compressive factor falls off rapidly.
A plane of greatest weakness occurs
at some angle near 45 de diminished while the intensity of the

compressive factor falls off rapidly.

A plane of greatest weakness occurs

at some angle near 45 degrees

depending on the nature of the

Figure 2—Resolution of axial compressing for at some angle near 45 degrees
depending on the nature of the
material. Failure, by shear fracture,
will occur in this plane.

IT ISS. 2 10 4
ISS. 2 10 4
In practice fracture of the shaft of a long bone does not occur under these circumstance
In practice fracture of the shaft of a long bone does not occur under these circumstance
le compressive st Simple compressive stresses without angulation are rare. When they do occur the cancellous
structure of the shaft of a long bone does not occur under these circumstances.
Simple compressive stresses without angulation are material. Failure, by shear fracture, Figure 4—Transverse fracture; soft-tissue hinge preserved.
will occur in this plane.
In practice fracture of the shaft of a long bone does not occur under these circumstances.
Simple c In practice fracture of the shaft of a long bone does not occur under these circumstances.

Simple compressive stresses without angulation are rare. When they do occur the cancellous

structure of the bone ends fails befor

Simple compressive stresses without angulation are rare. When they do occur the cancellous
structure of the bone ends fails before the shaft yields.
Bending—If a beam be subjected to bending stresses are set up within it structure of the bone ends fails before the shaft yields.
 Bending—If a beam be subjected to bending stresses are set up within it: compression

stresses on the concave side and tension stresses on the convex. A neutral Benung—it a beam be subjected to bending stresses are set up within it: compression
stresses on the concave side and tension stresses on the convex. A neutral plane of zero
stress occurs at some level between the two (Fig. stresses on the concave side and tension stresses on the convex. A neutral plane of zero
stress occurs at some level between the two (Fig. 3). If the stress be increased failure will
occur, in a brittle material like bone, occur, in a brittle material like bone, on the side under tension. A typical transverse crack will appear in that part under greatest tensile stress, the surface of the convex side. This crack diminishes the cross-section crack will appear in that part under greatest tensile stress, the surface of the convex side.
This crack diminishes the cross-section area of the beam at this point and the greatest stress is
laid on the next layer. The cr

In practice this type of fracture is **seen** when a bone that is not bearing weight or stressed Fins crack diminisies the cross-section area of the beam at this point and the greatest stress is
laid on the next layer. The crack spreads across the beam, always occurring in material that is
under tension. The resulta The soft-tissue hinger is the soft-tissue hinger is therefore transverse.
In practice this type of fracture is therefore transverse.
In practice this type of fracture is seen when a bone that is not bearing weight or stres under tension. The resultant fracture is thereform
In practice this type of fracture is seen whe
by muscular contraction is struck a direct blo
The soft-tissue hinge is preserved on the side of
may occur anywhere in the sh In practice this type of fracture is seen when a bone that is not bearing weight or stressed
by muscular contraction is struck a direct blow. In the tibia this often occurs at football.
The soft-tissue hinge is preserved o

by muscular contraction is struck a direct blow. In the tibia this often occurs at football.
The soft-tissue hinge is preserved on the side of the blow (Fig. 4). This fracture, like the blow,
may occur anywhere in the shaf The son-ussue linge is preserved on the side of the blow (Fig. 4). This fracture, like the blow,
may occur anywhere in the shaft of the bone.
Bending under axial compression—If a beam be loaded by axial compression durin may occur anywhere in the shart of the bone.
 Bending under axial compression—If a beam be loaded by axial compression during bending

the resultant fracture will be modified. If the compression force is insufficient in **Bending under axial compression**—It a beam be loaded by axial compression during bending
the resultant fracture will be modified. If the compression force is insufficient in itself to
cause failure, bending will lead to t Intertuant and the material might resist failure in the compression force is insufficient in itself to cause failure, bending will lead to the following situation. Compressive forces will diminish on the convex side of the cause ranure, bending will lead to the following situation. Compressive forces will diminish
on the convex side of the beam and increase on the concave. Failure may occur by shearing
on the side under compression and sprea other hand the material might resist failure under compression until the convex side were under such tension stress that fracture occurred on that side in a transverse plane. The vol. 43 B, NO. 1, FEBRUARY 1961

```
L
```
5

M. ALMS
fracture would spread across the beam until its cross-section were so reduced that failure
would occur under the compression force of the axial loading. The latter part of the fracture M. ALMS
fracture would spread across the beam until its cross-section were so reduced that failure
would occur under the compression force of the axial loading. The latter part of the fracture
would be at the oblique angle M. ALMS
fracture would spread across the beam until its cross-section were so reduced that failure
would occur under the compression force of the axial loading. The latter part of the fracture
would be at the oblique angle

be provided across the beam until its cross-section were so reduced that failure
ur under the compression force of the axial loading. The latter part of the fracture
at the oblique angle typical of this mode of failure. Ac would occur under the compression force of the axial loading. The latter part of the fracture
would be at the oblique angle typical of this mode of failure. According to the axial stress
and the properties of the material and the properties of the material so will the proportion of In transverse to oblique fracture be determined. As the axial loading
increases so will the oblique section be increased at the expense
of the transverse until the fracture is entirely oblique.
In practice this fracture is

increases so will the oblique section be increased at the expense
of the transverse until the fracture is entirely oblique.
In practice this fracture is often seen in the tibia. The bone
is usually bearing the body weight In practice this fracture is often seen in the tibia. The bone
is usually bearing the body weight and may be stressed also by
the far greater forces of muscular contraction and acceleration.
(It is worth remembering that i In practice this fracture is effert seem in the tibia. The bone
is usually bearing the body weight and may be stressed also by
the far greater forces of muscular contraction and acceleration.
(It is worth remembering that It is usually bearing the body weight and may be stressed also by
the far greater forces of muscular contraction and acceleration.
(It is worth remembering that in standing on the toes of one foot
the calf muscles must exe the far greater forces of muscular contraction and acceleration.
(It is worth remembering that in standing on the toes of one foot
the calf muscles must exert a force of about twice the body weight
to keep the heel elevate (It is worth remembering that in standing on the toes of one foot
the calf muscles must exert a force of about twice the body weight
to keep the heel elevated. The lower part of the tibia must provide
the counter thrust fo the can muscles must exert a force of about twice the body weight
to keep the heel elevated. The lower part of the tibia must provide
the counter thrust for this contraction besides bearing the body
weight. It is therefore the counter thrust for this contraction besides bearing the body weight. It is therefore stressed in its lower part with about three times the body weight (Fig. 5).) The healthy young adult involved in a road accident, eit times the body weight (Fig. 5).) The healthy young adult involved
in a road accident, either taking vigorous evasive action, or
subjected to violent deceleration, typically shows this fracture.
Basically a single curved su Subjected to violent deceleration, typically shows this fracture.

Basically a single curved surface is formed, oblique in part,

FIG. 5 formed by the shearing off of the fragment of bone bearing the

Stresses in the lower Stresses in the lower part of oblique surface is formed by the shearing off of the fragment of bone bearing the
Stresses in the lower part of oblique surface of the fracture. This probably occurs after the
the weight-beari transverse in part (Fig. 6). Very often a butterfly fragment is
formed by the shearing off of the fragment of bone bearing the
oblique surface of the fracture. This probably occurs after the
primary failure and is due to m FIG. 5 formed by the shearing off of the fragment of bone bearing the Stresses in the lower part of oblique surface of the fracture. This probably occurs after the the weight-bearing tibia.
each other. As the lesser fragme

FIG. 5
Stresses in the lower part of oblique surface of the fracture. This probably occurs after the
the weight-bearing tibia.
each other. As the lesser fragment moves and bears on the projecting spur of the major
fragment the weight-bearing tibia.

the weight-bearing tibia.
primary failure and is due to movement of the main fragments on

each other. As the lesser fragment moves and bears on the projecting spur of the major

fragment the pr

The STATE AND ISLAMATE:
 THE JOURNAL OF BONE AND JOINT SURGERY
 THE JOURNAL OF BONE AND JOINT SURGERY FIG. 6 **FIG.** 7 **FIG.** 8 **FIG.** 8 **FIG.** 9 **FIG.** 6 **FIG.** 6 **FIG.** 6 **FIG.** 6 **FIG.** 9 **FIG.** 8 **FIG.** 9 **FIG.** 8 **FIG.** 9 **FIG.** 8 **FIG.** 9 **FIG.** 8 fracture shown in Figure 1. The fracture line at the posterior border of the tibia is transverse. Fig. 6
Figure 6-Components of a single curved surface. Figure 7-Tracing of oblique transverse
fracture shown in Figure 1. The fracture line at the posterior border of the tibia is transverse.
Figure 8-Tracing of transverse

EXECUTE MECHANICS

on the bone at the time of failure so the extent of the oblique section will vary. In practice

it appears that the fracture always begins under tension—that is, there is always a transverse FRACTURE MECHANICS

on the bone at the time of failure so the extent of the oblique section will vary. In practice

it appears that the fracture always begins under tension—that is, there is always a transverse

element pr on the bone at the time of failure so the extent of the oblique section will vary. In practice
it appears that the fracture always begins under tension—that is, there is always a transverse
element present though sometimes on the bone at the time of failure so the extent of the obique section wit appears that the fracture always begins under tension—that is, there if element present though sometimes it is very small (Fig. 7). Similarly if al element present though sometimes it is very small (Fig. 7). Similarly is
always an oblique section to the most typical transverse fracture (Fig. 8)
that bone is always under some axial compression. When one
considers muscl

section to the midst typical transverse fracture (Fig.
that bone is always under some axial compression. When one
considers muscle tension the truth of the observation is evident.
A beam that is bent will fail near the mid that bone is always under some axial compression. When one
considers muscle tension the truth of the observation is evident.
A beam that is bent will fail near the middle and this fracture is
seen most commonly at the midbending, and the soft-tissue hinger the soft-tise hinger the soft-
bending, and the soft-tissue hinge (Charnley 1957) will be formed
on the concave side—the side of the oblique fracture and the A beam that is bent will fail hear the middle and this fracture is
seen most commonly at the mid-tibia or at the junction of the middle
and lower thirds. Like the transverse fracture it is produced by
bending, and the soft seen most commony at the m
and lower thirds. Like the
bending, and the soft-tissue
on the concave side—the
butterfly fragment (Fig. 9).
Twisting—If a shaft be twist and lower thrus. Eike the transverse fracture it is produced by
bending, and the soft-tissue hinge (Charnley 1957) will be formed
on the concave side—the side of the oblique fracture and the
butterfly fragment (Fig. 9).
T

behold the solitics and the solitics in the solitics in the concave side—the side of the oblique fracture and the butterfly fragment (Fig. 9).
 Twisting—If a shaft be twisted against resistance a shearing force is establ butterfly fragment (Fig. 9).
 Twisting—If a shaft be twisted against resistance a shearing force

is established. If the shaft be hollow it is easy to understand the

state of shear that is set up in its surface. Failure **Twisting**—If a shaft be twisted against resistance a shearing force
is established. If the shaft be hollow it is easy to understand the
state of shear that is set up in its surface. Failure of a brittle shaft
occurs in t **Follow From The axist CE axist and the stablished.** If the shaft be hollow it is easy to understand the state of shear that is set up in its surface. Failure of a brittle shaft occurs in typical spiral form, the angle of is established. If the shart be hollow it is easy to understand the state of shear that is set up in its surface. Failure of a brittle shaft occurs in typical spiral form, the angle of the fracture spiral being about 45 de state of shear that is set up in its surface. Failure of a orittle shart
occurs in typical spiral form, the angle of the fracture spiral being
about 45 degrees to the axis. In this plane the disrupting effects of
shearing about 45 degrees to the axis. In this plane the disrupting effects of
shearing factor and tension factor are at their greatest. Failure
at one point leads to a rapid spread in this plane until the upper
and lower ends of t and lower ends of the fracture lie one above the other.

Such a simple twisting force could scarcely occur in the skeleton except in the manipulation of the anaesthetised patient. The usual cause of rotation stresses is the misapplication of the Spiral fracture reduced
fracture line is then completed by a vertical element between by twisting forces.
these points (Fig. 10).
Such a simple twisting force could scarcely occur in the skeleton except in the manipulation body weight.

Such a simple twisting force could scarcely occur in the skeleton except in the manipulation

of the anaesthetised patient. The usual cause of rotation stresses is the misapplication of the

body weight. We s Such a simple twisting force could scarcely occur in the skeleton except in the manipulation
of the anaesthetised patient. The usual cause of rotation stresses is the misapplication of the
body weight. We should therefore Such a simple twisting force could scarcely occur in the skeleton except in the mampulation
of the anaesthetised patient. The usual cause of rotation stresses is the misapplication of the
body weight. We should therefore c of the anaesinetised patient. The usual cause of rotation stresses is the misapplication of the body weight. We should therefore consider the effects of axial loading on the twisted shaft. In Figure 11 the rotational shear The represents a unit area of the surface of the shaft. In Figure 11

resolved at a 45-degree plane into stresses of shear and normal

al compression force is resolved in the same plane into stresses

of shear, in the same

Epiesents a unit area of the surface of the stratt. In Figure 11

olved at a 45-degree plane into stresses of shear and normal

compression force is resolved in the same plane into stresses

of shear, in the same direction 45-degree plane into stresses of situation and normal
on force is resolved in the same plane into stresses
of shear, in the same direction, and normal com-
pression stress. If the intensity of stress of the two
original fo of shear, in the same direction, and normal com-
pression stress. If the intensity of stress of the two
original forces were equal, a state of simple shear
would occur at 45 degrees and failure would occur
at or near this or shear, in the same direction, and normal com-
pression stress. If the intensity of stress of the two
original forces were equal, a state of simple shea
would occur at 45 degrees and failure would occu
at or near this pl original forces were equal, a state of simple shear
would occur at 45 degrees and failure would occur
at or near this plane. The greater the axial com-
pression force the more nearly vertical will the
plane of simple shear would occur at 45 degrees and failure would occur at or near this plane. The greater the axial com-
pression force the more nearly vertical will the
plane of simple shear become, but the plane of
greatest weakness will never much exceed 45 degrees.
The forces of rotation pression force the more nearly vertical will the
plane of simple shear become, but the plane of
greatest weakness will never much exceed 45 degrees.
The forces of rotation on the tibia are not very
powerful and the bone of

greatest weakness will never much exceed 45 degrees.
The forces of rotation on the tibia are not very
powerful and the bone of the healthy young adult is
well able to withstand them. If failure occurs it **. FIG. II** #{149} **FIG. 12** well able to withstand them. If failure occurs it Fig. 11

Figure 11—Resolution of a transverse shear-

The solution of a transverse shear-

The force the more meaning force the more meaning the shall com-

Figure 11—Resolution of a transverse shear-

The force into the b Figure 11—Resolution of a transverse shear-
ing force into normal and tangential factors
at an angle of 45 degrees. Figure 12—
Resolution of a stransverse shear-
Resolution of a fracture-dislocation of
Resolution of a vert Fig. 11 Fig. 12
gure 11—Resolution of a transverse shear-
the same plane. The same plane. The same factors in the same plane.
Solution of a vertical compression force
into the same factors in the same plane.
The ankle. In **rotation can occur to stress** the malleoli. But once

this has occurred these small processes are the weakest part of the bone and they fail. In the Resolution of a vertical compression force
into the same factors in the same plane.
fits has occurred these small processes are the weakest part of the bone and they fail. But once
this has occurred these small processes a Inis has occurred these small processes are the weakest part of the bone and they fail. In the elderly the bone becomes osteoporotic and its strength is diminished. In a similar twisting accident the tibia can fail before elderly the bone becomes osteoporotic and its strength is diminished. In a similar twisting
accident the tibia can fail before sufficient force has been applied to cause this bone to lift
on the talus. The malleoli have no on the talus. The malleoli have not withstood the stress better than the shaft, they have not been subjected to the stress. This explains the prevalence of the spiral fracture in the elderly. Its situation, almost without Fracture and it is this part of the bone that is subjected to the greatest axial compression under the influence of the calf muscles.
vol. 43 B, NO. 1, FEBRUARY 1961