Section 16: Neutral Axis and
Parallel Axis Theorem
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Geometry of deformation

 We will consider the deformation of an ideal, isotropic prismatic beam
— the cross section is symmetric about y-axis

« All parts of the beam that were originally aligned with the longitudinal axis
bend into circular arcs

— plane sections of the beam remain plane and perpendicular to the
beam’s curved axis

Note: we will take these
directions for M, to be
positive. However, they are
in the opposite direction to
our convention (Beam 7),
and we must remember to
account for this at the end.

IGURE 8-3 Deformation resulting from the applied couples. Each cross section of the beam remains plane.

Bedford/Liechti, Mechanics of Materials, le, ©@2001, Prentice Hall
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Neutral axis

Longitudinal lines near
the top increase in
length

The longitudinal line in the x-y
plane which does not change in
length is the neutral axis

Longitudinal lines near
the bottom decrease in
length

FIGURE 8-4 Changes in the lengths of longitudinal lines.

Bedford/Liechti, Mechanics of Materials, le, ©2001, Prentice Hall
16-3 From: Hornsey



* A neutral surface is where longitudinal fibers of the
material will not undergo a change in length.

Axis of
SyYmmetry

~—..  INeutral
surface

Longitudinal
AX1%
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 Thus, we make the following assumptions:

1. Longitudinal axis x (within neutral surface)
does not experience any change in length

2. All cross sections of the beam remain plane
and perpendicular to longitudinal axis during
the deformation

3. Any deformation of the cross-section within its
own plane will be neglected

e In particular, the z axis, in plane of x-section and
about which the x-section rotates, Is called the
neutral axis
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By mathematical expression,
equilibrium equations of
moment and forces, we get

Equation 6-10 [,y d4 =0

O-m aX

Bending stress variation

JA y* dA ©

Equation 6-11 M =

C

* The Iintegral represents the moment of inertia of x-

sectional area, computed about the neutral axis.
We symbolize its value as I.
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Normal stress at intermediate distance y can be
determined from

. My
Equation 6-13 o= — N

oIS -ve as It acts in the -ve direction (compression)

Equations 6-12 and 6-13 are often referred to as
the flexure formula.
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Beams constructed of two or more different
materials are called composite beams

Engineers design beams in this manner to develop
a more efficient means for carrying applied loads

Flexure formula cannot be applied directly to
determine normal stress in a composite beam

Thus a method will be developed to “transform” a
beam’s x-section into one made of a single material,
then we can apply the flexure formula
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FIGURE 8-15 A T cross section can be used to decrease either the maximum tensile
stress or the maximum compressive stress to which a beam is subjected.

Bedford/Liechti, Mechanics of Materials, le, ©2001, Prentice Hall
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Moments of Inertia

e Resistance to bending,
twisting, compression or & T Lo
tension of an object is a =
function of its shape 1
« Relationship of applied
force to distribution of | k  ligenifia

: Y
mass (shape) with S T
. i I ]
respect to an axis. 4 R !
- = |-+;a

Figure from: Browner et al, Skeletal Trauma 2nd Ed,
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Implant Shape

« Moment of Inertia:
further away material |
IS spread In an object,
greater the stiffness

« Stiffness and strength

Same object upright
or on its side

Greater moment of
inertia = stiffer

are proportional to
radius? ) /_\
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1 1.78 3.06

7.48 8.88

FIGURE 8-14 Typical beam cross sections and the ratio of / to the value for a solid
square beam of equal cross-sectional area.

Bedford/Liechti, Mechanics of Materials, le, ©2001, Prentice Hall
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Moment of Inertia of an Area by Integration

dA = (a-x)dy

dy

T

Y
dA =dx n'y

o Second moments Or moments of inertia of
an area with respect to the x and y axes,

I,=[y%d4 I,=[x"d4

dl, = y2dA
i
dA =y dx

X
dl, = x*dA

 Evaluation of the integrals is simplified by
choosing d A to be a thin strip parallel to
one of the coordinate axes.

« For a rectangular area,

dx
dl, = x2dA

h
I, =[y°dA=|y*bdy=1bh°
0

» The formula for rectangular areas may also
be applied to strips parallel to the axes,

1'!.1'
dl, = %g;” dx

'”y = x2ydx

’ dlx=%y3dx dly:xszzxzydx
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Homework Problem 16.1

Determine the moment of
inertia of a triangle with respect
to Its base.

16-14 From: Rabiei



Homework Problem 16.2

a) Determine the centroidal polar
moment of inertia of a circular
area by direct integration.

b) Using the result of part a,
determine the moment of inertia
of a circular area with respect to a

diameter.
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Parallel Axis Theorem

e Consider moment of inertia / of an area 4

T, j an with respect to the axis 44’
B! Ly B’
” U 1=]ytad
d
A l A’

e The axis BB’ passes through the area centroid
and is called a centroidal axis.

[=[y*dd=[(y'+d)*dA
= [y'%dA+2d[ y'dA+d*[dA

[ =7+ Ad? parallel axis theorem
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Parallel Axis Theorem

* Moment of inertia /. of a circular area with

respect to a tangent to the circle,
C [T:]_+Ad2:%7rr4+(7zr2)rz

]AA' :[_BB'_'_AdZ
h

. 7 T e 4
jd I S
.
 Moment of inertia of a triangle with respect to a
D D’ centroidal axis,
/g\ ,

_ 2 _ 1733 1521,
Igp =1 q —Ad? = L bh® - 3bh(Lh)

\ B
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b !

r

2

Eh

B
1
-I.'f = ﬁ’/

I
I
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Moments of Inertia of Composite Areas

» The moment of inertia of a composite area 4 about a given axis is
obtained by adding the moments of inertia of the component areas
Ay, Ay, A,, ..., With respect to the same axis.
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Example: (Dimensions in mm)

Centroidal
AXIS

125
120

y =89.6 mm

- o

— 1
= 200x10)(125) + (120 x 20)(60
d (200><10+120><20)[( <10(125) +( X60)

=89.55 mm
=89.6x103m

L 250,000 +144,000] = 394,000
4,400) 4,400
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Example: (Dimensions in mm)

10 e What is 1,?

e What is maximum G, ?

—2
L =1 +Ay

L, = 3 = ; =0.19x10° mm*
3 . 3
5= bldz +AY = (2001)§10) +(200x10)35.4)° =3.28x10° mm*
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Example: (Dimensions in mm)

10 e What is 1,?

e What is maximum G, ?

—2

=1, =8.26x10° mm*=8.26x10"° m"*
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Maximum Stress:

sz '
O, =— | y
sz
Gx,Max - - | 'yMax
M
— — XZ (-89 6x10°3 (N/m? or Pa)
O-X,Max (826X10_6) ( )
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Homework Problem 16.3

—1imn.

Irkgm.—j ‘i

C 1o
14.10 in.

£ > Y

6.77 in.
The strength of a W14x38 rolled steel
beam is increased by attaching a plate
to its upper flange.

Determine the moment of inertia and
radius of gyration with respect to an
axis which is parallel to the plate and
passes through the centroid of the
section.

SOLUTION:

e Determine location of the centroid of

composite section with respect to a
coordinate system with origin at the
centroid of the beam section.

* Apply the parallel axis theorem to

determine moments of inertia of beam
section and plate with respect to
composite section centroidal axis.
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Homework Problem 16.4

SOLUTION:

y « Compute the moments of inertia of the
e 240 ) : )
o | bounding rectangle and half-circle with
respect to the x axis.

 The moment of inertia of the shaded area is
obtained by subtracting the moment of
Inertia of the half-circle from the moment
of inertia of the rectangle.

Determine the moment of inertia
of the shaded area with respect to
the x axis.
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