
Section 16: Neutral Axis and 
Parallel Axis Theorem
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Geometry of deformationGeometry of deformation
• We will consider the deformation of an ideal, isotropic prismatic beam

– the cross section is symmetric about y-axis
• All parts of the beam that were originally aligned with the longitudinal axis 

bend into circular arcs
– plane sections of the beam remain plane and perpendicular to the 

beam’s curved axisbeam s curved axis

Note: we will take these 
directions for M0 to be 
positive However they arepositive. However, they are 
in the opposite direction to 
our convention (Beam 7), 
and we must remember to 
account for this at the end.
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Neutral axis
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6.3 BENDING DEFORMATION OF 
A STRAIGHT MEMBERA STRAIGHT MEMBER• A neutral surface is where longitudinal fibers of the 

material will not undergo a change in length.g g g
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6.3 BENDING DEFORMATION OF 
A STRAIGHT MEMBERA STRAIGHT MEMBER• Thus, we make the following assumptions:

1. Longitudinal axis x (within neutral surface)1. Longitudinal axis x (within neutral surface) 
does not experience any change in length

2. All cross sections of the beam remain planep
and perpendicular to longitudinal axis during 
the deformation

3. Any deformation of the cross-section within its 
own plane will be neglected

• In particular, the z axis, in plane of x-section and 
about which the x-section rotates, is called the

t l i
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neutral axis



6 4 THE FLEXURE FORMULA6.4 THE FLEXURE FORMULA
• By mathematical expression, 

equilibrium equations of 
moment and forces, we get

∫A y dA = 0Equation 6-10 ∫A y dA  0Equation 6 10

σ
Equation 6-11

σmax

cM =          ∫A y2 dA

• The integral represents the moment of inertia of x-
sectional area, computed about the neutral axis. 
We symbolize its value as I
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We symbolize its value as I.



6 4 THE FLEXURE FORMULA6.4 THE FLEXURE FORMULA
• Normal stress at intermediate distance y can be 

determined from

Equation 6-13
My
I

σ = −

• σ is -ve as it acts in the -ve direction  (compression)
E ti 6 12 d 6 13 ft f d t• Equations 6-12 and 6-13 are often referred to as 
the flexure formula.
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*6 6 COMPOSITE BEAMS6.6 COMPOSITE BEAMS
• Beams constructed of two or more different 

materials are called composite beams
• Engineers design beams in this manner to develop 

a more efficient means for carrying applied loads
• Flexure formula cannot be applied directly to 

determine normal stress in a composite beam
• Thus a method will be developed to “transform” a 

beam’s x-section into one made of a single material, 
th l th fl f lthen we can apply the flexure formula
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Moments of InertiaMoments of Inertia

• Resistance to bending,Resistance to bending, 
twisting, compression or 
tension of an object is a 
function of its shape

• Relationship of applied 
force to distribution of 
mass (shape) with 
respect to an axisrespect to an axis.
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Implant ShapeImplant Shape

• Moment of Inertia:Moment of Inertia: 
further away material 
is spread in an object, 
greater the stiffness

• Stiffness and strength 
are proportional to 
radius4
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Moment of Inertia of an Area by Integration
S d f i i f• Second moments or moments of inertia of 
an area with respect to the x and y axes,

∫∫ == dAxIdAyI yx
22 ∫∫ yx

• Evaluation of the integrals is simplified by 
choosing dΑ to be a thin strip parallel to 
one of the coordinate axes.one of the coordinate axes.

• For a rectangular area,
322

h
3

3
1

0

22 bhbdyydAyI x === ∫∫

• The formula for rectangular areas may also 
be applied to strips parallel to the axes,

dxyxdAxdIdxydI yx
223

3
1 ===
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Homework Problem 16.1

Determine the moment ofDetermine the moment of 
inertia of a triangle with respect 
to its base.
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Homework Problem 16.2

a) Determine the centroidal polar 
moment of inertia of a circular 
area by direct integrationarea by direct integration.

b) Using the result of part a, 
determine the moment of inertia 
of a circular area with respect to a
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of a circular area with respect to a 
diameter.



Parallel Axis Theorem
• Consider moment of inertia I of an area A

with respect to the axis AA’

∫= dAyI 2

• The axis BB’ passes through the area centroid 
and is called a centroidal axis.

22 ( )

∫∫∫

∫∫
+′+′=

+′==

dAddAyddAy

dAdydAyI
22

22

2

2AdII += parallel axis theorem
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Parallel Axis Theorem
• Moment of inertia IT of a circular area with 

respect to a tangent to the circle,

( ) 22412 ( )
4

4
5

224
4
12

r

rrrAdIIT

π

ππ

=

+=+=

• Moment of inertia of a triangle with respect to a 
id l icentroidal axis,

( )211312

2AdII BBAA += ′′

( )
3

36
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Moments of Inertia of Composite Areas
• The moment of inertia of a composite area A about a given axis is 

obtained by adding the moments of inertia of  the component areas 
A1, A2, A3, ... , with respect to the same axis.
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yExample:
200

(Dimensions in mm)

z C t id l
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Example: (Dimensions in mm)y
200

10 • What is I ?

z o
20

30.4

2
AII

What is Iz?
• What is maximum σx?
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bdI
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Example: (Dimensions in mm)y
200

10 • What is I ?

z o
20

30.4

2
AII

What is Iz?
• What is maximum σx?

1

89.6
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zn yAII +=

20 20
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3

89.61
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20
3,z2,z1,zz IIII ++=
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Maximum Stress:

y

NA x
40.4 Mxz

89.6

'yMxz 'y
Iz

xz
x ⋅−=σ

xzM
Max

z

xz
Max,x y

I
⋅−=σ

( ) ( )3
6

xz
Maxx 106.89M −×−⋅−=⇒ σ (N/m2 or Pa)
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Homework Problem 16.3
SOLUTION:

• Determine location of the centroid of 
it ti ith t tcomposite section with respect to a 

coordinate system with origin at the 
centroid of the beam section.

The strength of a W14x38 rolled steel

• Apply the parallel axis theorem to 
determine moments of inertia of beam 
section and plate with respect to The strength of a W14x38 rolled steel 

beam is increased by attaching a plate 
to its upper flange.  

D t i th t f i ti d

composite section centroidal axis.

Determine the moment of inertia and 
radius of gyration with respect to an 
axis which is parallel to the plate and 
passes through the centroid of the
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passes through the centroid of the 
section.



Homework Problem 16 4Homework Problem 16.4
SOLUTION:

• Compute the moments of inertia of theCompute the moments of inertia of the 
bounding rectangle and half-circle with 
respect to the x axis.

Th t f i ti f th h d d i• The moment of inertia of the shaded area is 
obtained by subtracting the moment of 
inertia of the half-circle from the moment 
of inertia of the rectangle

Determine the moment of inertia 
of the shaded area with respect to 
the x axis.

of inertia of the rectangle.
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