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This chapter includes a selective and brief review of important assumptions, proce-
dures, and results from a first course in mechanics of materials. Some items of impor-
tance are incorporated in subsequent chapters rather than appearing here. The reader
is encouraged to consult a textbook of elementary mechanics of materials for detailed
treatment of material reviewed in this chapter.

1.1 METHODS OF s*maas ANAL\*SIS

Typical questzm pmad mmsa analysis are: Given tlm gwmatry of a body or structure, as
well as its material properties, support conditions, and time-independent loads applied to it,
what are the stresses and what are the displacements? A solution may be obtained by ana-
Iytical, numerical, or experimental methods. Analytical methods include mechanics of
materials and theory mfelmnmy This book considers both, and places emphasis on the first.

Mechanics of materials is the engineer’s way of dmng stress analysls. The mathmd
involves the following steps.

1. Consider ciefmmmmm produced by load, mwl aamblmh (or approxxmate) how
r over the body. This may be done by experiment, intuition,
symmetry argum ts, and/or prior knowladgﬁ
~ Analyze the gé mﬁtty of deformation to d&i:ermmf: how strains are distributed
_ over a cross section.
3. Determine how stresses are distributed over a cross section by applying the
stress-strain relation of the material to the strain distribution. ‘
. Relate stress to load. This step involves drawing a free-body diagram and writing
equations of static equilibrium. The result is a formula for stress, typically in
_ terms of applied loading and geometric parameters of the body.
. Similarly, relate load to displacement, either by integration of the strain distribu-
tion determined in step 2 or by using energy arguments that relate work done by
applied loads to elastic strain energy stored.
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2 Chapter1  Orientation. Review of Elementary Mechanics of Materials

Results of a mechanics of materials analysis may be exact, or good approximations, or 1.2 TERMI
rough estimates, depending mainly on the accuracy of assumpigms made in the first ' The
step. Examples of the foregoing analysis are reviewed in subsequent sections, which
point out that a substantial list of restf; tions is needed if the resulting formulas are to
be va!id ,

Theory of elasticity is the mathematician’s way of doing st;r s analysis. In this
method, one seeks stresses and ézsgiacemenis that simultaneously satisfy the require-
ments of equilibrium at every point, compatibility of all displacements, and boundary
conditions on stress and displacement. In contrast to the mechanics of materials

- method, this method does not operate under any initial assumption or approximation
about the geometry of deformation. Therefore theory of elasticity can solve a problem
~ for which deformations cannot be reliably anticipated, such as the problem of deter-
mining stresses around a hole i te. However. the technique is more difficult than
the mechanics of materials method and cannot be successfully applied to as great a
wvariety of practical problems. Ofte a practzcai problem is treated by a mixture of elas-
_ ticity and mechanics of materials
Many problems of stress analysis are be:st solved numerically, on computers that
_range from PCs to supercomputers. Numerical analysis software is powerful and versa-
tile; it has become comparatively easy to use and presents results graphically with great
_polish. None of this analytical power assures that results are even approximately cor-
rect. An analyst might easily blunder in deciding what simplifications are appropriate,
in choosing the specific computational procedures to use, or in preparing input data.
Computed results may contain large errors and, in any case, must be checked against
results obtained in some other way. Mechan aterials analysis serves well for
checking, even in cases where it provides only a rough approximation. Regardless of
the analysis method, success in solvin n depe mmmmy upon the* analyst’s
having mar mﬁigm mm th@ phenome “study.

em portant for the purpose at hand.
Thus, a Stmm raiser may be temporaril egiwtm might: of the body may be ignored,
or a distributed load may be regarded as acting
the magnitude of loading is not usually kn czh precasmn ) After demsmg a
model, one must do all appropriate analys \ m;ample one must not stop with
stresses if buekimg is also a possible mode of failure. 'Accordmg}y, 1 goal of studying
stress analysis is to learn what idealizations and analysis goals are appmpnate, which
_implies that one must learn how bodies of various shapes and sappart conditions
_respond to various loads. ‘
Finally, some words about derivations. Why study the derivation of a formula?
First, it makes the formula plausible. A more important reason is that a derivation
makes clear the assumptions and restrictions needed in order to obtain the formula.
- Thus, by knowing the demvatzﬁﬁ ‘one can recognize situations in swkxch a formula
-should not be applied. / -
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Section 1.2 Terminology - 38

1.2 TERMINOLOGY

"H}e f{}ﬁewiﬂg listis far from exha&sﬁ?e, Terms listed are used thraﬁgﬁeat this book.

“Beam. An elongated member ﬁuaﬂy slender, intended to resist lateral loads by
_bending.

_ Body force: A loading that a;*:ts thr(}ughout a bz}dy rather than fmiy on its sur-
face. Self-weight and the inertia force of spinning about an a;xzs are instances of
_ body force.

Boundary conditions: Pi‘f:SCnﬁéd dmpiacgmenzs at certain locations; for example,
the stipulation that the supported end of a cantilever beam neither translates nor
rotates, These boundary conditions may also be called support conditions. The
term “boundary conditions” may also indicate prescribed stresses, forces, or
moments. For example, at the unsupported end of a cantilever beam loaded only
by its own weight, transverse shear force and bending moment must both vanish.

Brittle behavior: A material failure in which fracture surfaces show little or no
evidence that failure has produced permanent deformation.

Cold working: Deformation that results in residual stresses. (In contrast, hot working
is deformation at high enough temperaium that stresses quickly dissipate by anneal-
ing.) Cold working by shot peening is the bombarding of an object by metal shot
(roughly 0.2 mm to 4 mm in diameter) thrown at substantial velocity (roughly 70
m/s), the purpose being to produce residual compressive stresses in the surface layer,
Curvature: The reciprocal of the radius of uﬁwamre p, that is, k = 1/p; used in
beam theory.

Ductile behavior: Material behavior in whimh appmmable permanent dﬁfmrmw
tion is possible without fracture.
Elastic: Material behavior in whxch d&fmmmmm p oduced by load disappaar
when load is removed. \
Elastic limit: The largest uniaxial normal stress for wmch material behavior is
elastm (Gwmpam yield strength.) \
1e ratio of axial stress o, to ama! strain e, in uniaxial loading;
E= o /e, Restricted to a linear relation betwwn o,and e, ‘Also called modulus
of elasticity or Young’s modulus.
Fixed: A boundary condition in which all matmn is pmvented Also called built-
in, clamped, or encastre.
Flexure: Bending.
Frame: A structure built of bars, in which reiatw& rotation between bars is pre-
vented at joints, as by welding bars together where they meet. Bending of the
; _ bars is usually important in the calculation of stresses. (Compare fruss.)
at a derivation ~ Homogeneous: Having the same material properties at all locations.
in the formula. ~ Isotropic: Having the same properties (stiffness, strength, conductivity, etc.) in

ch a formula  every direction. As examples, glass is isotropic, wood is not 1setmpac {(Compare
. orthotropic,)
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4 Chapter1  Orientation Review of £¥e§feﬁtary Mechanics of Materials

Lateral: Directed 1o the side; Lha& directed normal to the axis {}f a beam or nor-
1al to the surface of a plate or a shell.

Nonlinear problem: A problem in which deflections or stre&s&s are not directly

roportional to the load that produces them, An example is the contact stress
_where a train wheel meets the rail. The area of contact grows as load increases.
Another example is an mm’  flat membrane, like a trampoline. Lateral load is

eflection and the deflected sh D

Orthotropic: Having different stiffness (or other properties) i in ﬁlfferant direc-
tions, with the directions of m um and minimum stiffness bﬁ ng mumaiiy per-
_ pendicular. (Compare isotropic.
_ Permanent set: Deformation remains after removal of 1}3/ load that pro-
 duced it. . .
_ Plastie: A state of stress or d nation that results in permanent set if the load is
~ removed. ‘ v -
_ Poisson’s ratio: Designated by v, where v = — € /e, and €, and €, are respectively
_ the transverse and axial stra roduced by a uniaxial stress n:z;r01 below the pro-
_ portional limit. ’

Principal stress: A normal stre; o, acting on an area A (or dA) When A(ordA)is
free of shear stress. In this book, numerical subscripts on principal stresses indi-
cate algebraic ordering, maximum to minimum; thatis,o, = 0, = 0.

Prismatic member: A straight bar with identical cross sections. In other words, a
uniform straight member; the solid gemmmd by tmxxsias;mg a plane shape along
a «;trmgm am normai i

al tmss for w,hlch stress is directly

amwxpmd in

load that causes f

moment, all yi

1f stress is ' icative of if stress is dlrectly proportmnal

ta applied load, then SF s the number by which the stress

auses tlw mwm 1] to fai must be divided in order to obtain the allowable

wed in service. Typically, design
T ﬂhé&ien for SF is influenced by

racy of v:ie:szgﬂ pmcedures' b/ Ihe: cost of faﬂure, and by the c«osi of adopting a

Saint-Venant’s principle: The proposition that two statically equivalent loadings,

_ applied (separately) to the s - region of a body, each produces essentially the

same state of stress and de ation i istances from the loaded

region ereater than the la i ] ion. (Caution: This

principle is not reliable for thin-walled construction or for some orthotropic
materials.) ‘
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Section 1.3 Properties of a Plane Area 5

Shaft: An elongated member, usually slender and straight, intended to resist tor-
sional loads.

not directly '  Shear modulus: The ratio of shear stress r to shear strain y; G = r/y. Restricted
~ toalinear relation between 7 and v. Also called modulus of rigidity.
- §1mpiy supported: A boundary ondition in which lateral displacements are pre-
_ vented but rotations are allowed. A simple support applies no moment to a struc-
_ ture. A simple support may also be called pinned or hinged.

Static indeterminacy: A condition in which one is unable to calculate all support
reactions, or all internal forces or stresses, by use of imly the conditions of static
_equilibrium. {Deformations must also be considered in order to obtain a com
plete solution.) :

Static load: A load that does aei vary with time. A more precise term would be
“quasi-static load,” because a truiy static load could be neither applied nor
removed. : -

~ Superposition: The p:*mczpie:: thai two or morte static loads, appheﬁ sequentially in

~any order, produce the same final result as obtained by applying all loads simul-

taneously. The principle is not applicable in instances of nmhneaﬁiy of response,
under either an individual load or combinations of loads.

~ Transverse: Across. Thus, for iﬁ@g:l or deflection, the same as lateral.

Truss: A structure built of bars in which each bar is idealized as a two-force
member, as if amis of bars were connected mg«ather by frictionless pins.

Yield stmng;th* haximum uniaxial tensile mmm that can be applied without
exceeding a specified permanent set upon release of load. It may also be called
yield stress. The specified permanent set is often taken as an axial strain of 0.002.
In a metal, numerical values of the elastic ltmut pmpmuonal limit, and yield
strenmh are usuaﬂy quite similar,

1.3 PROPERTIES m*«' A PLANE AREA

Properties ofa plane area are often needed, particularly for beam problems. The: more
essential properties and manipulations are reviewed here.

Definitions. Cet)' ;:im* a plane area A, with mcta’\ gutar Cartesian coordinates st in
the same plane, Fig. 1 3-1a. By ciefxmtlon, |

= [fdA L=[sda 1,- [sdr (13-1)

1, and I, are moments of inertia, about s and ¢ axes respectively. I, is the product of iner-
tia. I, and 1, are always positive, but /, can be positive, negative, or zero. Contributions
st ziA are positive for areas dA in tﬁe first and third quadrants and negative for areas
auti dA in the second and fourth quadrants (Fig. 1.3-1b). If s or ¢ is a symmetry axis of A,
e orthotropic then I, = 0. The argument is shown in Fig. 1.3-1b. Each contribution +st dA is matched
, bya conmbun{m —st dA. Summing over A, we tham 1,=0
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6  Chapter Orientation. Review of Elementary Mechanics of Materials

spondmg quantities referred ta
centroid of area A. In Fig. 1.3-1¢,

=1, + Asgtg (1.3-2)

_ where [, = j ¥ dA, I,= f.x3 dA,and I, = f;xy dA. Distances s, and ¢, are the coordi-

nates ni cmtmxd gin the: st system. 'Ihebe distances carry &Igﬁbram s:gns (both are posi-

lm last of Eqgs. 1.3-2 is as follows. Substitute

s=s, »Mm &mdtm y aind n tlmtfx dA and [y dA both vanish
bec:a - the i | :

i

/(J&%%)(y-i—tg)djim f yMMMMt [ a4
(13-3)
= lm, + Asgzg

i

The remaining two theorems in Egs. 1.3-2 are proved in similar fashion.

Centroidal Principal Axes. In general, equations for principal axes do not require
 that axes be centroidal. However, in what follows, the origin of coordinates is placed at
the centroid of area A because centroidal coo ina :
Consider Fig. 1.3-1c. Systems xy and én are both rectangular, centroidal, and
coplanar with A. The orientation of system xy can be chosen for convenience; for
example, parallel to straight sides if area A happens to have them. System £n is ori-
ented at arbitrary angle 6 with respect to system xy. Coordinates of a point in the
_ rotated system énare E=ysinf+xcosfandn=ycosf —xsiné. ‘Thus we can obtain
 the foilnwmg expressions by integration and substitution of trig emetnc identities
’ ‘fﬁr sin’@, cos’d, and sin 6 cos (s&e qu. 1.10-1). ‘

= [ 7 dA yields zgmggzxrai I +§{zx 1,)cos20 — g,sm 20 (13-4a)

From: Rapoff




ntroidal, and
onvenience; for
ystem £n is ori-
f a point in the
s we can obtain
netric identities

sin20  (1.3-4a)

Section 1.3 Properties of a Plane Area 7
= [ enda  yields I, = (L — 1,)5in26 + 1,,c0s20 (1.3-4b)

One can select # so that the moment of inertia of A becomes a maximum about
either the £ axis or the n axis. If {§¥s the maximum /, it happens that [_is the mini-

_mum /, and vice versa. The maximum [/ and the minimum [ are caiiéd principal

moments of inertia and their corresponding axes are called principal axes. The value
of # that maximizes (or minimizes) I is called 6, It is determined fmm the equation
dl,/de = 0, which yields

‘t‘:‘ig”i{”% | ’ 1.3-5
an ‘bwl},*‘“fx (“)

the other for /

min®

By using Eq. 1.3-5 in

Angle 6, has two values, /2 apart oneforl ..,
Eq.1 3~4a we obtain the principal moments of inerua:

1.+1 i ~
Imax,min = ,.»»i,..,l 4 (Mw"z“m”}*) + fiy i (13"6)

Substitution of Eq. 1.3-5 into Eq. 1.3-4b yields [, = 0. That is, the product of inertia is
zero for principal axes. The converse is also true: if [, = 0. then axes £ and 7 are princi-
pal. Therefore, if € or v is an axis of symmetry, then & and v, are principal axes.

From Eq. 1.3-6, we see that I, + I, = I, + I, This relation can be useful in cal-
culation, for example to determine [, when Imm I - and I, have already been calcu-
lated. It may be physically obvious which of the two mgms in Eq. 1.3-5 refers to the
1, axis, as in Fig. 1.3-2b. Otherwise the candidate angle can be substituted into Eq.
1.3-4atoseeif I, turns out to be 1, or I, ;.. Or, adapting a formula developed for stress
transformation (sm below Eq 2.2-5), the counterclockwise angle 6, from the x axis to
the axis about which / is maximum is given by tan 0, = (/, — 1,,,,)/L,,,

If I, = L, angle 6 does not matter. Then mll centroidal axes yield the same I,
and the pmduct of merﬂa is zero for all these axes (Fig. 1.3-2¢).

¥ y
y oy
(5 &
©

. FIGURE 1.3-2 Various plane areas with centroidal axes xy. (a) Right triangles. (b) Isosceles
_right triangle. (¢} Circle, square, and equilateral triangles. For each. I =1 and [ =0
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8 Chapter1  Orientation. Review of Elementary Mechanics of Materials

_ Polar Moment of Inertia J. Letrbe {:he distance from the origin of xy coordinates
to an element of area dA. Then ¥ = xz + 32, and with respect to the “pole”at x =y =0,

i e Vel J - f (F+y)dA o 1= It (3

’}‘i;e iattef formula may be uwfa% as a calculation device Also, J is aseé in the torsional
. anaiysxs of bars of circular cross se%t;a:z*

EXAM PLE

For the plane area in Fig. 1.3-3 we will determine /., 1, 1, locate the prmcg}ai centroidal axes,
and determine the principal moments of i

Thecentroid of A at x =y =0 has akeady beﬁn located, by means of calculations explained
in textbooks about statics, For convenience in the following calculations, the cross section is arbi-
trarily divided into parts 1 and 2, as si:;awn Centroids of these parts are at;z =) =—15mm for
paﬂ 1,and x = y = 25 mm for part 2. Equation 1.3-2 yields

7 - { - 2000(~ {6{}(2’2{}}? + 1200(25}3} (13-8)

where the two bracketed expre;mo&s ome from parts 1 and 2, respectively. /, is obtained from a
similar calculation and fm is . . ’

= [0 + 2000(—15)(—15)] + [0 + 1200(25)(25)] (1.3-9)
Caueczmg mau}ts, we h

*'Q%’T(’m‘*)mm 0)mm' 1, = 1200(10°) mm*  (13-10)

, =310 (131])

20mm
FIGURE 1.3-3 A plane area. ,éxzsxy are centroidal. Axes £y are cm’ztrméai aaé pnnezpai
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Section 14 Axial Loading. Pressure Vessels 9

_ In this example it is clear by ms;aéetmn of Fig. 1.3-3 that I, =1, rather than
1 =7 .Angle 6, =-31"tothe [ aat}s, shown in Fig. 1.3:3,1s venﬂed by the formula

taﬁ 8 { Xx max)f

1.4 AXIAL LOADING. PRESSURE VESSE*;S

Straight Bars. Consider a pﬂﬂmaﬂﬁ bar loaded by centroidal axial f{}I‘{:% P, Fig. 1.4-
1a. The basic assumption about deformation is that plane cross sections remain plane
when load P is applied. Thus any two cross sections a distance dx apart increase their
stroidal axes, sepazaﬁon an amount du (Fig. 1. 4-1’%}, and axial strain is € = du/dx at aﬁ points in a
cross section. If the same stress-strain relation prevails throughout a cross section (that
ns explained ' is, if the material is homogeneous), then axial stress o is also the same at all points in a
section is arbi- cross section. Equilibrium of axial forces requires that oA = P, Thus the stress formula
becomes o = P/A. This result is not valid close to points of load application, where it is
obvious that plane cross sections do not remain plane. According to Saint-Venant’s
principle, o = P/A should be an accurate formula at distances greater than ¢ from the
loaded points, where ¢ is shown in Fig. 1.4-1c. The resultant force provided by a uni-
form stress distribution acts at the centroid of a cross section. For any cross section,
load P must be collinear with this resultant. Therefore, if o is to be uniformly distrib-
uted over a cross section, load P must be directed through centroids of cross sections.
Accordingly, the bar cannot be curved. Taper, if not pronounced, causes little departure
from the basic assumption; then o is almost uniform over a cross section and is a func-
tion of axial coordinate x.
In uniaxial stm&s, a linearly elastic mawml has ﬂm stress-strain-temperature
relation ‘

(13-10)

(1.3-11) f .= % + a AT (1.4-1)

where a is the coefficient of thermal expansion and AT i is the temperature change.
: From the strain axpwmmn € = du/dx, an increment of axial displacement is du = € dx.
(13-12) Combining this expression with Eq. 1.4-1 and integrating, we obtain

L
u= / (fi ta AT)dx (1.4-2)
L \E

el
g

F{Gi}%E 1.4-1 (a) Prismatic bar under centmﬁéal amaj load £ (b) Axial deformatwng ami axxal stress 0.
(ﬁ} ’13*94{:&1 cross section.
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as the axial deformation over a length L. (The symbol u is used in preference to 8 or A
in order to agree with notation in subsequent chapters, where 1, v, and w denote dis-
placement components in x, y, and z directions respectively.) Any of the quantities in
parentheses in Eq. 1.4-2 may be a function of x. For the uniform bar in Fig. 1.4-1, with
AT=0, Eq. 1.4-2 reduces to the familiar expression u = PL/AE. The presence of E in
this formula—or in any other formula—makes it obvious that the formula is restricted
to linearly elastic conditions.

Pressure Vessels. Let the cylindrical tank in Fig. 1.4-2 be thin walled, which custom-
arily means that r, = 10 or more. Internal pressure causes points to displace radially
but not circumferentially. Radial displacement u, greatly exaggerated, is shown in
Fig. 1.4-2b. The initial length of arc CD is r, d6. Its final length, after radial displacement
u, is (r;+u)dd. Its change in length is therefore u d6, and its circumferential strain is
€ = (1 d0)/(r;d0) = u/r. It is reasonable to assume that all points through the thickness
have almost the same radial displacement . Therefore, because all points also have
almost the same radius, circumferential strain is almost uniform through the vessel
wall. If the material is homogeneous, uniform strain implies uniform stress, Hence,
summing forces in the direction of pressure p in Fig. 1.4-2¢, we obtain

¥
o= -[% (1.4-3)

p(2r;dx) = 2(ot dx) from which
In similar fashion one can obtain axial stress pr,/2t in the cylindrical tank and stress pr,/2t
in any surface-tangent direction in a spherical tank. These formulas are not reliable, even
for thin-walled pressure vessels, near changes in geometry such as AA and BB in Fig, 1.4~
2a, which are circles where end caps are connected to the cylindrical vessel.

If the vessel were thick walled, we could not conclude that circumferential strains
are almost uniform through the vessel wall. Imagine, for example, that ¢ = r. Then, for
circumferential strain to be the same both inside and outside, radial displacement of
the outer surface would have to be twice that of the inner surface. This conclusion is
unreasonable. In fact, the inside displaces somewhat more than the outside. Thus, if the
wall is thick, the inner surface carries higher strain and therefore higher stress than the
outer surface. Considerations from theory of elasticity are needed to obtain expres-
sions for stresses in a thick-walled cylinder under internal pressure.

A w} t B
) de
4 1 N
MY + =

N
i !

A B Ai F=Fy, €g= 7

(a) (b) ©

FIGURE 1.4-2 (a) Side view of a thin-walled cylindrical pressure vessel. (b) Deformation of the vessel
wall due to internal pressure, viewed axially. (¢) Circumferential stress, exposed by a cutting plane that
contains the axis of the cylinder.
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Section 1.5  Torsion 11

ence tod or A 1.5 'r{}gstaﬁ
denote dis- '

quantities in k »Ct}x;sxdar a prismatic bar of circular cross section, whose maiemal is hﬁmogenwus
Fig. 1.4-1, with ‘ ' ind isotropic. The geometry of é’efa;manon which may be established by experi-
‘ ‘ ‘ ment or by symmetry arguments, is that initially plane cross sections remain plane
la is restricted ' when {he bar is twisted. Also, radial straight lines remain straight, and rotate about
f the axis. The diameter and léngth of the bar do not change. From all this one deduces
that radial, circumferential, and axial normal strains are absent, and that shear strain
which custom- y varies linearly with distance 7 from the axis but is independent of the circumferen-
splace radially ~ tial and axial coordinates. If a wctaagtéar grid is drawn on the surface of the bar, one
. is shown in finds that twisting produces the deformed grid shown in Fig. 1.5-1a. All right angles
al displacement ‘ of the grid change by the same amount. This amount is the value of shear strain y at
ential strain is _' radius r =c.

_Let the shear stress versus she:a: strain relation be linear, 7= G’y Then, since
shear strain y varies linearly with distance from the axis, so does shear stress r: symbol-
ically, 7 = kr, where k is a constant. To relate 7 to the torque 7 that produces it, we con-
sider equilibrium of moments about the axis of the bar. Thus, from Fig. 1.5-1b.

T = jA r(rdd) o T= kerdA = k] (1.5-1)

Hence k = T/J, and the expression T = kr becomes 7 = - Tr/J. which is the standard tor-
sion formula. Note that r acts on longitudinal planes as well as on transverse planes, as
shown in Fig. 1.5-1c.

Figure 1.5-1c leads to a formula for 6, the angle of twist of one end of the bar rel-
ative to the othar, Anglaﬁ y and d# are small, so \

il

L ' e
ds =ydx=rdd  hence 0= / %dx (1.5-2)
gt

S dA=srdrda

. W)
Fi’GSRE 1.5-1 (a) Deformation produced Efi&rque T applied to a bar of circular cross section.

{b) Force increment 7 dA produces torque ;mment r{rdA). (¢) Geometry of deformation that
leads to a formula for angle of twist 4. :

smation of the vessel
utting plane that

From: Rapoff




12 Chapter Otientation. Review of Elementary Mechanics of Materials

This result does not require that the material be linearly elastic. But if it is, we can sub-
stitute y = 7/G = 7r/GJ, whereupon the integrand in Eq. 1.5-2 becomes 7 dx/GJ If T,
- G, and J are independent of x, we obtain the familiar sxpress:eﬁf} TL/GJ. The pres-
ence of (G in this formula makes it f}bvamzs that the formula i :s lim ed to linearly elastic
_conditions. -
/ ‘The manner of suppaﬁ or t@rsxaﬁai load application, or ﬁiﬁ presence of stress
~raisers such as circumferential grooves, causes only local disturbances of stress, in
~ accord with Saint-Venant’s principle. These disturbances have little effect on the angle
_ of twist. If the bar is tapered, J = J(x). The formula 7 = Tr/J has little error pro-
_ vided the taper is slight. Chaagc that would invalidate our simple formulas, and the
~reasons why, are as follows. otropy, unless it is polar about the axis of the bar,
. would make y and r depend on the circumferential coordinate as well as on r. The
same effect would be produced by material properties that vary c;xcumiarenuaily, and
by a noncircular cross section (see Section 7.11). A sharply curved geometry, as for the
_coil of a massive helical spring, vould make v larger toward the inside of the coil (see
Section 6.1). / -

1.6 BEAM STRESSES

Bending. Cmnszctcr a prismatic beam, whose matenai is homogeneous and isotropic.
We requ hat the beam have a plane of symmetry, and that the beam be bent to an
arc in this plane (Fig. 1.6-1). The geo try of de mmamm can be estabhsh by exper-
iment ot by aymmmry argumems: l,

rotation df. M mmdmate ¥, axxal strain is —e an axial ﬁxspiacement is—e dx, negatm
because € is mmpmsmva when y is pthwm With p the mdms of curvature, the small
angle df can m mpmw in two ways. ,
. ;
df = - £di and dammﬁ hence € =

Y P
Thus we see that e varies linearly vith y. It i sasonable to assume a umaxwl state of
stress. If the stress-strain relation is linear, then axial stress o is o , where k is a
constant. Two equilibrium conditions are applicable: The stress distribution provides
zero axial force and bending moment M. That is, ;

0= fA CIA b 0=k f viA (1.6-2a)

M= - / ¥odA) hence M= —k j yzéé = kI  (162b)

Equation 1.6-2a demands that [y dA =0, which means that the z axis, at y = 0, passes
through the centroid of the cross section. From Eq. 1.6-2b we obtain k = —M/I, where I

_is the moment of inertia of cross-sectional area A about its centroidal axis z. Hence the
expression o = ky becomes o =—My/l, which is the standard flexure formula.
Typically we write simply o = My/I, because the algebraic si o at a given y is obvi-
ous from the direction of the bending moment.
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Section 1.6 Beam Stresses

Cross section:

T
Plane of symmetry

@ ®) ©
 FIGURE 1.6-1 {a) Beam bent in the xy §Iaae (b) Deformations in the xy plane, (c) Arbitrary

~ (but symmetric) cross section of area A. The symmetry plane of the cross section & normal to
the paper. ~

_ Common situations to which the flexure formula is not applicable, or applicable
’ f there is no symmetry plane, we cannot pre-
sume that axial strai e is independent of z (axis z is shown in Fig. 1.6-1c). That is,
Eq. 1.6-1 is no longer correct. This situation is called unsymmetric bending and is dis-
cussed in Chapter 10. If the beam has pronoun itial curvature before load is
applied, plane cross sections still remain plane, but we cannot conclude that e varies
linearly with y (see Chapter 6). If the material is not linearly elastic, then o # ky, and
the latter forms of Eqs. 1.6-2 no longer apply. Similarly, if the material is not homoge-
neous, then o # ky. Therefore we cannot use ¢ = My/I to analyze a reinforced con-
crete beam. Finally, if the cross section is wide we must mrxmdmr that the body is a plate
rather than a beam (C‘hapwr m)

Transvewa &mar. If bending moment M is not cons am, a transverse shear force V
exists in a straight beam. Force V produces transverse shear stress, which acts on trans-
verse planes and on longitudinal planes. For Ms for shear ﬂmw and shear stress are
derived from the flex 1

From the sh‘&ar ]

cross section. 'Ihm average shear stress may be quite accurate or quite maccurat&g
depending on circumstances. For example, in Fig. 1.6-2b, shear stress on plane AB is
small because ¢ in T = VQ/It is large (here ¢ is the width of the flange). Moreover, if
plane AB is moved very close to the inner flange surface, r must approach zero on that
portion of the inner flange where the adjacent surface is free of stress. On the portion
of plane AB 1mmedxa£e§y adjacent to the web. r approaches the transverse shear stress
on plane CD, where ¢ is the web thickness and 7 = VQ/It is accurate. The largest trans-
verse shear stress in the flange is exposed by a vertical cutting plane such as EF, where
tin VQ/It is the flange thickness. Details of these matters, and of how to use the for-
mula VO/Ir, appear in textbooks of elementary mechanics of materials.
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¥ / / . Free
surface

(a) . (®) ’ ©
FIGURE 1.6-2 Cross section of a beam that carries transverse shear force V. Cutting
planes A8 €D and EF ormal to the yz plane. - /

1.7 BEAM DEFLECTIONS

Briefly, the formula that relates lateral deflection v to bending moment M is developed
as follows. We use notation in Fig. 1.6-1. If }zi»vfdxl < 1, as is usual in practical beams,
then the curvature of the deformed beam can be written as 1/, d*v/dx’. Also, for a
linearly elastic material, Eq. the flexure f =—My/I yield another
expression for curvature: 1/p=—e/y = —(c = M/EI Equating
the two expressions for curvature, we obtain \ « \

Restrictions on this formula include those on the flexure formula. Also, deflections
must be sufficiently small that sl = dv/dx of the deformed beam is everywhere
much less than unity in magnitude. Transverse shear deformation has been neglected.
Equation 1.7-1 actually says that M/EI is equal to the change in curvature. This view-
point may become important for a beam having initial curvature before load is
applied. For a beam initially straight hen bent to radius p, the initial curvature is
zero, and the change in curvature is (1/p — ip .

An alternative form of Eq. 1.7-1 can be written, as follows. Equations of static
equilibrium, applied to Fig. 1.7-1a, yield dM/dx =V and dV/dx = q, where q is the
intensity per unit length of distributed lateral load. Hence d’M/dx’ = q. For M we can
substitute EI(d°v/dx’) from Eq.1.7-1. Thus . \

& \ ..

dx2< o g i EI is mdégzndem ofx (1.7-2)

_ The latter form will be useful in subsequent chapters. .

~ One can determine beam deflections (or solve statically indeterminate beam
problems) by integrating Eq. 1.7-1 and making use of support conditions to evaluate

~ constants of integration (and redundant reactions). Usually it is easier to solve these

_ problems by use of tabulated beam formulas and the superposition principle. Indeed,
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MLL ‘}PL?' L ql’?
2EL  BEI

() :
FIGURE 1.7-1 (a) Loads on a differential element of a beam. {b) Formulas for tip deflection and tip

rotation of a uniform cantilever beant. (¢} Problems of deflection, rotation, or static mdetermmacy
szzivabie by use of formulas in (b).

‘ ~ the few formulas in Fig. 1.7-1b are sufficient to solve most common problems of straight
d*v/dx’. Also, for a ' beams, including all those shown in Fig. 1.7-1c. An example problem is solved in Sec-
'y/I yield another tion 1.8. Like Eq. 1.7-1, formulas in Fig. 1.7-1b require that |§| < 1 throughout the beam.

M/EL Equating - ‘

SYMMETRY CONSIDERATIONS. STATIC INDETERMINACY

Symmetry Considerations. Sometimes one can exploit symmetry to obtain internal
forces, determine support conditions, or reduce the effort required for analysis. For
example, consider the simply supported beams in Fig. 1.8-1. Both have symmetry of
geometry, elastic pmpmm, and support conditions with respect to a plane normal to
Blec the beam axis at its center. The beams differ only in loading. In Fig. 1.8-1a, a mirror
¢. This View: reflection of either half in the symmetry plane yields the other half in geometry, elastic
fore load 1 properties, loading, support reactions, deformations, and internal forces at the symme-
try plane. For antis etric loading, Fig. 1.8-1b, one half yields the other half after
reflection and reversal of loading, support reactions, defmmatmm, and internal forces
, \ at the symmetry plane. These considerations, in combination with the action-reaction
ere g is the intes utting open the beam, preclude the existence of
For M we can shear forces V.. for symmetric loading and bending moments M. for antisymmetric
loading. Thus in either case the number of unknowns is immediately reduced by half.
The same considerations can be used in three dimensions. The semicircular beams
in Fig. 1.8-2a lie in the xy plane. For each, there is symmetry of geometry, elastic proper-
ties, and support conditions about the yz plane. For symmetric loading, Fig. 1.8-2a, sym-
metry considerations dictate that at xmdpomt C there is no x direction displacement, no
rotation about the y axis or the z axis, no transverse shear force in the y direction or the
z direction, and no torque about the x axis. These conditions are listed in Fig, 1.8-2a.
Unknowns at C are displacements v and w, rotation 6, about the x axis, axial force F,,
pnnczpia Inr.%eed ~ and hendmg moments M, and M, ai%zmt the y and z axes. These unknowns could be
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Symmetric loading: Antisymmetric loading:

FIGURE 1.8-1 Uniform simply ;gigﬁarteé beams, showing internal moments and forces
at center €. Supports apply negligible horizontal force if deflections are small.

_ determined by analysis of either half of the semicircular beam. In Fig. 1.8-2b two of
 the forces P and O are reversed, so the load is antisymmetric. Symmetry considerations
dictate the zero quantities listed in Fig. 1.8-2b. Again, analysis of either half of the beam
is sufficient to determine the unknown quantities at C, which are 4,6,,0,, V.,V ,and T
~ The foregoing arguments are not immediately obvious. Th: reader is urged to
consider these examples patiently, and to make supplementary sketches that show
internal fmc% and moments.

Static mdatmminwy The term is defined i in ﬁwﬂm 1.2. Calculations are illustrated
by ﬂw following wmmples,

Wmﬁ %mr in Fxg\ 1.8-3a is aﬂ af the sa matamai Itis to b{a uniformly

For example,inpart 1.6, = (G/E}} a AT =—a AT/3. Note also 1at modest tempera-
: t&re change: can prcdnce large stress. In the present example, if the bar is steel and

nate to the second degree. Syngggiry ceasxde;‘atmns can be ase;;i ;s
of indeterminacy. Imagine that M. is applied as two couples M /2, an infinitesimal dis-
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Symmetric loading: - - Antisymmetric loading:

iR e : E
Zeroat Cu, 0,0, V,, V., T, ; Zeroat C:o.w, 0, Fo, My M,
and forces ~ i (a) 2 (b) o

FIGURE 1.8-2 Unif@ semicircular beams in the xy plane.

tance apart, and straddling point C. The loading is antisymmetric, so at C there is a
transverse shear force V. but zero bending moment and zero vertical displacement
(Fig 1.8-3c). Using formulas in Fig. 1.7-1b to state that the transverse displacement is
zero at C, we solve for V. and then fe:c moment M, at the wall.

th,m)_,w Mcfzﬁz + Ygﬁf =0
\ 1

361 3E

Finally, having mmlwd the mdetermmacy, we can use F;g,;. 1.7-1b again to determine
the rotation at €.

(Mc/2)a_ Vea

% kI 3

Problems such as those i in Fig. 1.8-3 are pmbabiy call ti to mind by the term “statically
indeterminate analysis.” However, the term is also appropriate for the derivation of
conventional stress formulas such as o = My/I: an equilibrium equation, such as the
first of Eqs. 1.6-2b, ywidﬁ the second only when it is known how stress varies over the
cross section. The variation is obtained by consideration of displacements.

, FIGURE 1.8-3 (a) Stepped bar held by rigid walls. {b) Statically indeterminate beam. {c) Right
n mﬁmteswnai dis- half of the beam, with symmetry considerations exploited.
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1.9 PLASTIC DEFORMATION. RESIDUAL STRESS vall v

Here we review the problem of plastic torsion for a shaft of solid circular cross section. f
Other instances of plastic action are considered in subsequent chapters.
_ The stress-strain relation in Fig. 1.9-1a is linearly elastic up to stress 7y and flat-
topped thereafter. This idealized behavior is called “elastic-perfectly plastic” and is
appropriate for low-carbon steel. Because strain hardening is ignored, calculations
provide a maximum or “fully plastic” torque T, that is less than the actual maximum
torque. We now ask for 7, and the pattern of residual stress upon unloading.

As twist increases, yielding eventually begins. It spreads from the outer surface
toward the axis of the shaft. To calculate 71, we assume that twist is sufficiently great
that practically all the material has yielded. Thus, shear stress is the constant value 7,
throughout, and the first of Egs. 1.5-1 provides ~

, ,
g%g~ hence = 1 7 ) (1.9-1)

where the latter expression in parentheses is the torque that initiates yielding, obtained

_ from the torsion formula for 1 ly elastic conditions; that is, r = Tr/J with r =, at
r = c. This result shows that torque can be increased 33% after yielding begins.

Unloading can be accomplished by superposing on 1,, a torque of equal magni-
tude but reversed in direction. Anticipating that unloading will be elastic, we obtain
the stress distribution in Fig. 1.9-1c from the reversed torque 7= T, and the elastic
stress formula r = 7r/J. At first glance this calculation may appear wrong because the
largest stress exceeds 1,. However, stresses in Fig. 1.9-1c always appear in combination
with stresses in Fig. 1.9-1b. In combination, 7 never exceeds y in magnitude, so unload-
ing does not produce further yielding. If torque 7, is again applied, residual stresses
combine with the reverse of stresses in Fig. 1.9-1c to produce again the fully plastic
stress pattern of Fig. 1.9-1b, by newed yielding. .

The residual angle \ ing cannot be calculated because we have
not specified how much the shaft was twisted in producing 1,,. An infinite angle of
twist would be required to bring inelastic strains all the way to r =0.

What is the range of torque for w nditions are linearly elastic? If there are
no residual stresses, a torque 7=, J/e =17 ¢ /2 could be applied in either direction

 without yielding, for an elastic range of rymc’. If the residual stresses in Fig. 1.9-1d pre-

Lﬁadiﬁg ‘ Unloading _ Residual

(a) b (©) o
_ FIGURE 1.9-1 (a) Elastic perfectly plastic material, (b.c.d) Stress distributions corresponding
1o fully plastic torque, unloading (reversed elastic) torgue, and resultant (zero) torgue.
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vaﬁ we could apply a torque 7, in the original direction or (2/3)(ry J/c) in the
reversed direction without renewed yielding, for an elastic range of ry7c’. Thus the
magm?;mie of the elastic range has not changed.

110 €}T¥££§ REMARKS

Stress Transformation. For refﬁreﬁi:e and for use in chapters that fﬂﬁﬁﬁé two*dzmew
sional stress transformation equations are shown in Fig. 1.10-1. These equations may be
res ted in other forms, for which tha faﬁowmg trigonometric identities are useful.

00 = 2sinfcosd cos’d = 5{3_ + cos 26)

. (1.10-1)
c0s20 = cos’d — sin’d  sin’f = 52»(} ~ cos20)

Dimensional Homogeneity. In the calculation of stresses and deflections, it is often
best to obtain a numerical result as the final step of solution, by substitution of data
mtcx a symbolw resul Thus we avoid manipulating numb&rs for some quant:tw*» that

. (FLL
= o

These dimensions are correct: length units for v, and dimensionless (radians in this
case) for éw "I‘hx:-z mwlt does not prove the fumula& to be correct, but had we obtained

(1.10-2)

0 = 0, cos8 + 0, sin’0
+ 2 7y 8in Heos @

0, = 0, 870 4+ 0, cos?H
~2 1 8infcos d

s ‘12“(‘?;» ~ o) sin 26
+ 7y CO8 28

FIGURE 1.10-1 Transtormation of stresses in a plane.
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~ Units. Example pmbien};ééﬁé’kamewoxk problems serve as vehicles to convey con-

- cepts, principles, and procedures. Accordingly, the system of units used for numerical

problems is of little importance. SI units are used in this book. Note that the average
stress due to a 1 MN force on a square meter can be written in the following forms:

10°N 10°N

poca e 6 = < e o
T s = 10°Pg - 1 MPa or o {m{}(}m}z = 1 MPa (1.10-3)

lm

_ The latter form, which is used in subsequent chapters, avoids the conversion factor of

10° That is, forces in newtons, dimensions in millimeters, and stresses and moduli in

megapascals form a con stent set of units, without need for conversion factors.

However, if mass must be considered, as for inertia force loading, it will be easier to use
meters rather than miiiimetai{&

Classification by Problem Geometry. A slender member is usually called a bar,
beam, or shaft, depending on whether the load is axial, lateral, or torsional. These
problems are called one-dir nsional, even though stress varies over a cross section
as well as axially under ben ng or twisting load. A flat body se thickness is much
less than its other dimensions provides a two-dimensional ps blem. It is usually
_called a plane problem if loads have no lateral (thickness-direction) component, and
_ 2 plate or plate bending problem if they do. In general, stres es in plane and plate
_ problems vary with both of ’n~plane'rdizf¢a@’i:@m Stresses also vary in the thickness
direction of a plate under lateral load, A floor slab is a familiar example. A shell is
like a plate, but curved; familiar examples include an egg shell and a water tank. A
shell can carry both surface-tangent a d surface-normal loads. Many shells, and
many solids too thick to be called s lls, are symmetric about an axis and have load-
ing that is also axisymmetric. Then nothing varies in the circumferential direction
and analysis is simplified. Such a body is called a shell of revolution if it is thin-walled
or a solid of revolution if it is not, An example of the latter is a turbine disk of
strongly varying thickness that rotates at constant speed. ‘ \

Connections. In this book, as in st other books about stress analysis, we may sim-
ply state that members are connected together, without saying how, an perhaps even
disregarding stress concentrations associated with the connection. Thus we limit the
scope of the book, Unfortunately the reader may then infer that connections are unim-
portant, which is far from the case. The behavior of a real structure may depend as
much on its connections as on its individual members. Connections are often the weak-
est parts of a stucture. . -

Bolted or riveted connections are sometimes analyzed in a first course in
mechanics of materials. One learns that several modes of failure are possible and that
analysis can be tedious, despite simplifying assumptions that neglect stress concentra-
tions, friction and possible slipping, making and breaking of contacts, misalignment,
initial stresses, and damage to the material from cutting, bending, and punching holes.
Other complexities arise if we consider gluing, welding, and shrink fits. Practical
analysis and design of connections may be done using accepted codes and procedures
that differ according to type of joint, and which vary considerably with type of indus-
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try. The study of connections is an important specialty in stress agaiyszs References
include [1.1-1.5].

Handbooks. Many useful formulas for stress analysis do not appear in textbooks but
may be found in handbooks or their computer software equivalents. The existence of
this information does not erase the need for ability in stress analysis. Formulas can be
used successfully only if the engineer understands the physical problem well enough to
know what sort of formula to seek, understands the assumptions that underlic a for-
mula, and is able to judge whether an answer produced by the formula is reasonable.
Useful handbooks include [1.6, 1.7] for widespread coverage of stress and deflection,
[1.8] for pressure vessels and the ASME code for them, [1.9] for buckling of bars,
frames, plates, and shells, and [1.10] for modes and frequencies of vibration.

Codes. Engineering societies have produced codes that mandate allowable stresses,
design procedure, and methods for testing, construction, operation, and maintainance
of plants and equipment. Much of this information has grown out of éxpﬁrieme with
costiy failures [1.11, 1.12]. Codes and gpecxfmatmns may receive little mention in engi-
neering education, but it would be shortsighted to ignore them. Indeed, the engineer is
often legally bound to follow one or more codes. Also, in situations where a code is
applicable. it is likely to be the easiest route to an acceptable design. Students of struc-
tural engineering are probably familiar with des pecifications of the American
Institute of Steel Construction, There are a gre r codes and specifications,
SO many that space does not permit us to list them

The value of codes is illustrated by the his ry ﬂf boiler accidents. About the year
1900, on average, one boiler explosion occurred every day in the United States.
Subsequently, codes for the design, construction, and operation of boilers were written
and widely adopted. Today boiler explosions are rare despite a fifteen-fold increase in
operating pressure since 1900 [1.13].

W

)ROBLEMS

The fmnwmg roblems can be solved using the review material presented in this chap-
ter, although many of the problems are less familiar or more challenging than those usu-
ally seen in an aiamemary textbook. Assume that materials are linearly elastic unless a
nonlinear stress-strain relation is provided. State results symbolically in terms of loads,
dimensions, properties of cross sections, and material constants, unless a numerical
answer is required or other instructions are given.

A prismatic bar is loaded by an axial force 2. Show that P must be directed through cen-
troids of cross sections if axial stress o is not to vary over a cross section.

Springs in the structure shown are linear and are unstressed when displacement v is zero.
Determine an expression for v without assuming that v < L. With L =100 mm and
k = 20 N/mm, obtain numerical values of P for displacements v of 10 mm, 40 mm, and
50 mm. Show that superposition &smg the first two resulls does not yield the third. Plot P
versus v.

Two slender rings, one aluminum and the other steel, just fit together at temperature
=(0°C, as shown, What is the contact pressure between them when 7 > 0°C?
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PROBLEM 142 PROBLEM 1.4-3

L5-1. A shaft of solid circular cross section is loaded by torque 7. Consider a half-cylinder cut
from the shaft by three cutting planes (see skeich). Show that stresses exposed by the
cutting planes keep the hal ~cylinder in static equilibrium. -

. £ , Glue layer, area 4
 PROBLEM 1.5-1 ' . PROBIEM 152

1.5-2. A flatplate is attached to a flat surface by a thin layer of glue of arbitrary shape and com-
paratively low modulus. An x-parallel load P is applied to the plate (see sketch). Axes xy
are centroidal axes of the glue layer. What are shear stresses 7, and r_ in the glue layer?

~ (Suggestion: Assume that these stresses are proportional to displacement components of
the plate, and that the plate has rotation 6 and translatic n components u, and v, at

x =y =0.Area A and its properties will appw in the solution.)

. The skwmh shows the post-buckling s ape of a slender bar that was initially straight.

Load F is known, and the shape y = f(x) of the buckled bar is accurately known. What
the easiest way to determine support reactions at ends of the bar?

X

_ PROBLEM 1.6-1

1.6-2. In the beam of Fig. 16-1 it i  proposed that flexural stress has the form o = ky. Show that
the cross-sectional area must have a zero product of inertia if this equation is to be correct.

From: Rapoff
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1.6-3. (a) Consider a prismatic beam, and conjecture that plane cross sections do not remain
/ plane when bending moment is applied. Without equations, devise arguments that
refute the conjecture. -
(b) Similarly, consider a prismatic bar of circular cross section. Refute the con-
jectures that cross sections warp and radial lines become curved when torque is
applied. :
(c) The flexure formula o = My// follows from the condition that plane cross sections
remain plane in pure bending. A cantilever beam under transverse tip load experi-
ences transverse shear deformation, and plane cross sections do not remain plane,

Yet the flexure formula loses no accuracy. How can this be?

1.6-4. Letaprismatic beam have a rectsggaiar cross section, b units wide aafi i; units deep. The

a half-cylinder cut ' material has elastic moduli £, in tension and E_ in compression. Derive expressions that

ses exposed by the , ‘ v relate stress to bending moment. The expressions should reduce to the conventional flex-
. ure formulaif £, = £

1.6—5 The uniform beam shown has w&ght g per unit length. It rests on a r;gzé horizontal sur-
face. If one end is [ifted by a force F < ¢gL/2, what is the haximum bending moment in
the beam in terms of F and g?

L~
PROBLEM 1.6-5 PROBLEM 1.6-6

1.6-6. When not loaded, the uniform beam shown has constant radms of curvature p, where
p > L. Downward forces F are then applied to the ends. ,
es curvature at the center of ﬂw bmm to zero?
(h} Fm larger F.a cmtml portion of length s becomes flat. Obtain an expression for s

1.6-7. The beam shown has a slight taper. For what value of ,/h, does the largest flexural stress

appear at x = L/2? What then is the ratio of flexural stress at x = L/2 to flexural stress at
x=1L?

PROBLEM 1.6-7

1.7-1. A cantilever beam is loaded by uniform shear stress r applied to its upper surface only, as
shown. Obtain expressions for x-direction normal stress at A and at B. Neglect stress con-
centration effects. Also determine the deflection components of point C.
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PROBLEM 1.7-1

Y=L (L — 2. What center deflection v, is produced by force P? Assume that
vsh=|, - .

7-3. Let the cantilever beam of Problem 1.7-1 be thermally loaded, such that the temperature
varies linearly from AT on the lower surface to —~AT on the upper surface. Obtain an
expression for the deflection of point € due to AT, ’

1.7-4. 1t is proposed that a beam be constructed with a joint consistiﬁg:i}f two horizontal links,
as shown, so that the joint will transmit bending moment but no transverse shear force.
Will this construction work as intended when load P is applied? Explain.

expressions for the

, these
hen M L/EI
7-6. For what value of a/b will the two p:
B when moment M, is applied at A7

a

PROBLEM 1.7-6 - PROBLEM 1.7-7

~7. It is desired that both ends of a uniform beam remain horizontal when moments M, are
applied as shown. For what value of a/b will this be so?
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}.’;&3. Each of the beams shown is to be made with a small initial curvature, such that aload F

_ moving across the beam will have no vertical displacement. What sii{miﬁ be the initial
shape y=flx) of cach beam?

PROBLEM 1.7-8

7-9. Two identical rollers of average radius R are to be pushed together by end forces P, as
shown. It is desired that the contact force between them be uniformly distributed along
length L. Thus the rollers should not be quite cylindrical. How should R vary with x?
Assume that the rollers are compact rather than guite slender, but that transverse shear
deformation can be neglected.

k”‘“‘“"‘ |

PROBLEM 1.7-9 PROBLEM 1.8-1

1.8-1. Members of the three-bar truss shown are identical except for length. Determine the dis-
placement of joint D due to each of the following loadings. (a) P=0,0 > 0.(b) P >0,
O =0.(c) P= 0 = 0; all bars uniformly heated an amount AT

1.8-2. Let gears of different sizes be fastened to either end of 2 prismatic shaft of circular cross
section. Let there be two such shalfts, set parallel so that gears of radius R and 2R engage
in the manner shown. Frictionless bearings, not shown, ensure that ths shafts twist with-
out bending. What torsional stiffness 7/6 is seen by torque 17

1.8-3. A square frame is made by wel together four identical slender bars of circular cross
section. The frame is placed horizontally atop corner supports that can exert vertical
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PROBLEM 1.8-2 PROBLEM 1.8-3

force but no moment. A %s;iicé! load P is applied to the migicﬁa of one side, as shown.
What is the displacement of the loaded point and of the point opposite it? Let G = EJ2;
thus Bl = G/,

1.8-4. Two slender beams are built in to a rigid disk and to rigid walls, as shown. Through what

angle does the disk mtatéi fa small torgue 7 is applied?

PROBLEM 1.8-4

1.8-5. Use formulas in Fig. 1.7-1b to determine the center deflection of each beam in Fig. 1.7-1c.
In the second case, determine also the rotation at the right end.

1.8-6. A bimetal beam is constructed by bondin, gether b der beams of rectangular
cross section. Material properties of the componen differ, including thermal

s to determine radius of

; ] ng moments M, and M,. Also,

write expressions for axial stresses at upper and lower surfaces of the composite beam in
terms of the internal forces and moments.

PROBLEM 1.8-6

8-7. Let several vertical posts of diameter D be artayed in a straight line with distance L
between them. A long slender beam is woven between the posts, as shown. Determine
the maximum flexural stress in the beam. .
1.8-8. A long straight beam has weight ¢ per unit length. The beam is laid atop a small eylinder,
as shown. Over what span 2L is the beam not in contact with the horizontal rigid floor?

_

_

.
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ite i letG= E;‘Z,

wn. Through what

¢ with distance L
5 shown. Deterﬁiine

atop a small cylinder,
rizontal rigid floor?

1.9-2.

Problems 27

PROBLEM 187 PROBLEM 188

Two flat rigid walls include a small angle 8 between them. A beam c sgctangalar cross
section is just in contact with the walls, as shown. What uniform temperature increase AT

s sufficient to place both ends of the beam in full contact with the waﬁs*? Express AT in

termsof 8. h.o and L.

e e
7n
]

PROBLEM 1.8-9

The bar shown has uniform cross-sectional area A and is fixed at both ends. An idealized
stress-strain relation is also shown. Assume tbm the wiatwn is valid in compression as
well as in tension.

(a) Determine the value of load P that initiates ywl&mg
(b) Determine the fully plastic load P,
(©) ﬁawmm& me @mm of residual stress afwr mm l’*ﬂ, is mmm&d

PROBLEM 1.9-1

Let the bar in Fig. 1.8-3a have the stress-strain relation used in Problem 1.9-1. Ends are

fixed to the walls. Starting from the stress-free state, lower the temperature of the entire

bar 1.5 times the amount AT that initiates plastic action.

(a) What then are the axial stresses? Express answersintermsof oy,

(b) What are the residual stresses, and the residual displacement at the step, if the tem-
perature is restored to its original value? Express answers in terms of oy, L, and E.

For the three-bar truss of Problem 1.8-1, let O = 0 and let the stress-strain relation be as
depicted in Problem 1.9-1. Determine the fully plastic load pr, Also construct a dimen-

_ sionless plot of P versus the horizontal displacement u,, of point D, usmg P/Acy as ordi-

nate and Eu;,/Loy as abscissa.
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