Section 14: Mechanics of Materials – Material Properties

Stress & Strain

- Stress-strain ratio: stiffness or compliance of the material
 - $E = \sigma/\epsilon$
- Linear material
 - Hooke' law: $\sigma = E \cdot \epsilon$
- Biological material nonlinear due to its tissue fluid component (viscoelastic properties)

3

1. General mechanics principle

• The underlying mechanics principle for metal forming is the stress-strain relationship; see Figure 1.

True strain, ϵ

Stress vs. Strain

For the bike fork material $E = 29.0 \times 10^6$ psi.

From: Gateway Engineering Education Coalition

Strain

- Change in shape or deformation (ε)
- Absolute strain
- Relative strain

 $-\Delta L/L_o$

Poisson's ratio :

• normal strain :
$$\mathcal{E} = \frac{x}{\ell}$$

- lateral strain : $\varepsilon_L = \frac{\Delta d}{d}$
- Poisson's ratio : $v \equiv -\varepsilon_L / \varepsilon$

Definition of Strain and Poisson's Ratio:

•This is the definition of engineering strain. •In this definition, I_0 is the initial length of the specimen; I_i is the instantaneous length of the specimen; ΔI is the difference between the two.

From: Wei

14-7

Viscoelasticity

From: Noffal

- Pure elastic material
 - strain energy returned
 - no energy loss
- Viscoelastic tissues
 - lose energy due to heat
 - energy is not returned immediately
 - Resilient
 - Dampened
- Hysteresis: area representing energy lost

3

Viscoelasticity

- Creep response
- Stress-relaxation response
- Effects of strain-rate on stress relaxation

