eZWSN - Exploring Wireless Sensor Networking
Lab Version

Thomas Watteyne

Berkeley Sensor & Actuator Center, UC Berkeley, USA.
watteyne@eecs.berkeley.edu

Goal

After this tutorial, you will be able to program a microcontroller (in this case &PKI30)
and a radio chip (in this case a CC2500), and to implement state-of-theramienication
protocols for Wireless Sensor Networks. No prior knowledge is neeatbdr than (very)
basic C and some wireless networking theory. This tutorial is meant to be farigdion.

Key words: Embedded Programming, Wireless Sensor Networks, RF measurements,
Medium Access.

Basic rules apply when using the eZ430-RF2500 boards:

e beware of static electricity, don’t touch the componentsdatly;

e never disconnect a target board from the USB programmeillipiigged
into the computer;

e never disconnect a target board from the battery unit withger on (two
leftmost pictures);

e connect as shown on the two rightmost pictures, otherwise you destroy
the board !

16 April 2009

1 Prerequisites& Timeline

For this tutorial, you need:

e an MSP430 eZ430-RF2500 Development Tool kit, i.e. two tabgatrds, a USB
programmer and a battery uhit

e a computer running Windows, with a free USB port;

¢ the following freeware (available online): IAR Quick StaBmartRF studio,
PuUTTY, eZ430-RF2500 Sensor Monitor Demo, cygwin (with paskeNUplot
and sys), Xming for windows;

¢ ideally, an oscilloscope like the Tektronix TDS 210 with @ resistor mounted
in an open jumper.

This tutorial is meant to be completed within 8 hours (oné dialy or two half
days):

hour 1. Discover the development environment, run a basic demag (p. 3
hour 2. Discover the eZ430-RF2500 board and its components (p. 6).
hours 3-4. Simple examples for the MSP430 (p. 12).

hour 5. Simple examples for the CC2500 (p. 19).

hours 6-7. RF measurements (p. 25).

hour 8. Implementing a preamble sampling MAC protocol (p. 31).

Keep 30 minutes at the end of the lab to build a complete WSNepted in Sec-
tion 8. Before starting the lab, read Section 3 completely, and have a look at
the structure of the document.

I This set of 2 motes is manufactured and sold by Texas Instruments for $49.
2 If this software is not installed, refer to the Installation Instructions pravide separate
document

2 The Development Environment (hour 1)

This section details the environment you will use througdhbis tutorial. You will
use this environment to run a simple demo, to measure cwednés using the
oscilloscope and to read serial output using the host caenput

2.1 eZ430-RF2500 Sensor Monitor Demo

The eZ430-RF2500 board comes with demo software, which
creates a WSN in a star topology around fteeess Point. A
node which is not an access point is calledzsal Device. By
running this demo, you will learn how to use the IAR tool.

2.1.1 Running the Code

e Download the source code of the falon your Desktop, unzip, and create folder
lab_ezwsn on your folder. You will only use/change code from that falde
you can remove it at the end of the tutorial.

e Enter thetidemo/ folder.

e Double-click onreZ430-RF2500 Sensor Monitor Demo v1.02.eww ,
this opens IAR.

¢ In the Workspace, select tHeverview tab, right click on theEnd Device
project and choosBet as Active

e Pluginthe USB programmer, and select Project > deudD). The source is
compiled, downloaded onto the target board and a defawkpi@Ent causes ex-
ecution to stop at functiomain() . Stop the debug session by selecting Debug
> Stop DebuggingGtrl+Shift+D);

e Disconnect the USB programmer and swap the target boardeéetthe USB
programmer and the battery unit.

e In Workspace, set thAccess Point project as active. Repeat the programming
process. You now have two programmed target boards; cldRe 1A

2.1.2 Running the Demo

e Plug in the Access Point target board mounted on the USB anagper in the
computer. Both LEDs start blinking.

e Launch Start Menu > eZWSN > eZ430-RF2500 Sensor Monitor, ayspd the
temperature of the Access Point.

3 http://www.eecs.berkeley.edu/ watteyne/290Q/source_ code.zip

P 7430-RF2500 Sensor Monitor = [[t

Technology for Innovators *P Texas INSTRUMENTS

Fig. 1. Section 2.1 is done when you have a similar window on your screen.

L
AL board

:

Fig. 3. ...and read the current consump-

Fig. 2. Use thel2 jumper to switch on tion of the board.

the target board...

e You see the temperature of the access point. Switch on yaubDewice, which
appears on the screen (see Fig. 1).

2.2 Oscilloscope: Read the Current Consumption

The End Device is instructed to transmit a message every|sec-
ond; its radio is off the remainder of the time. Using the os-
cilloscope together with th&S2 resistor, you will be able tg
visualize the current consumption of the board.

Leave the Access Point plugged into the computer.

Switch the target board on using the jumper with tkeresistor (Fig. 2).
Connect the oscilloscope onto the resistor as in Fig. 3. Whatrgad is the
current consumption in amps of the boatd£ R - I, with R = 19)).

Zoom onto a single wake-up period. Use the averaging funaifadhe oscillo-
scope to obtain a clear reading. Fill in Table 1 identifyihg tlifferent phases.
We can assume the boards are powered by two AAA batteriesanctipacity

Phase duration| av. current

sleep

radio is switched on

IDLE mode

RX mode

TX mode

Average current consumption

Lifetime with a 2000mA*hr battery

Table 1
Duration and average current consumption of the different phases\aal.

£ COMA - PuTTY [ESREER=)

Fig. 4. Section 2.3 is done when you see a screen similar to this one.

of 1000 mA*hr, under the hypothetical condition in which thatteries hol

d

their voltage ideally until their capacity is exhausted.cD#dte the approximate

lifetime in Table. 1.

2.3 Read Directly From COM Port

So far, the Sensor Monitor visualizer has extracted thettatz

access point node and displayed it graphically. In thiseect

you will read the data coming from the access point direc

from the COM port, i.e. you'll have access to the raw da
You will learn how to use PUTTY and Windows’ Device Managetr.

tly
ta.

Close all open windows; plug in the access point board.

Open the windows Device manager (Vista: Start > Settings >trGbRanel >
Device Manager; XP: Start > Settings > Control Panel > CompJdteragement

> Device Manager).

Under "Ports (COM & LPT)", you'll see a device called "MSP430 Apation

UART (COMz)", remember that number,

Open PUTTY, select Connection Type: Serial and Enter theeco£OMe in
Serial Line, leave Speed at 9600, click Open.

You obtain a screen close to the one depicted in Fig. 4.

3 eZ430-RF2500 Board and its Components (hour 2)

So far, you have played around with existing code and have
had a high level view of the mote. It is now time to dig into
the hardware and understand both what the mote board is com-
posed of, and how you can program it. This section is purely
theoretical (i.e. no exercises), but serves are a basibé@ubsequent sections
in which you will have to write software for the board.

3.1 Crash Course on the MSP430f2274

The heart of this platform is its MSP430 microcontroller, Tgxas Instruments.
There is a complete family of MSP430 micro-controllers, Hagiants of which
are different in the amount of RAM/ROM and 1/O capabilitiesainly. The one
you will program is the MSP420f2274, featuring 32KB + 256Brédish Memory
(ROM) and 1KB of RAM.

The MSP430 is a 16-bit RISC microcontroller. 16-bit means #flaregisters hold
16 bits; interconnection between the elements of the ntorgroller is done using
16-bit buses. RISC — for Reduced Instruction Set Computer +sredehe fact that
there are (only) 27 core instructions.

3.1.1 Operation of the MSP430

Fig. 5 shows the internal architecture of the MSP430. The Cétdains 16 reg-
isters; its operation goes as follows. A system clock tidka programmable rate
(e.g. 1MHz), so eachs an instruction is fetched from memory (ROM), copied into
the right register and executédAn example execution can be adding two registers
and copying the result to a third. In practice, these loveleletails are taken care
of by the compiler, which translates C into assembler laggund binary code. In
this tutorial, we only work with the higher-level C.

3.1.2 Programming the MSP430

When you program a mote, you program its microcontrolleryioal put the com-

piled binary code at the right location in the MSP430's ROMmmoey. When the

board is switched on, the MSP430 starts by fetching the fisttuction at a prede-
termined location in ROM; this is where the programming fmatis your compiled

code.

4 Strictly speaking, instructions can take a couple of CPU cycles to execute

P T
| | clock practk | Flasty ‘ ; ; |
RAM Peripheral[—]Peripheral[—|Peripheral
I System |y, spck| ROM P | |Fenp | I
| MCLK S NN 1 N TRANEY I
: I
| S [| MaBis-Bi | :/ : e a— :
I|rsccrul |& |
Il 1sBit S |
Bi us Bi
! [wosieer — fBus K MDB 8-Bit . > I
JTAG |
] N SN R > ¥ NS ¥ |
| ACLK —H] ' - - |
l SMCLK ~M\patchdog| |Peripheral Peripheral[~|Peripheral| |Peripheral I
I I
L -

Fig. 5. The internal architecture of the MSP430.

To configure other components (e.g. to set the transmissweipof the radio), you
need to program MSP430 in such a way that it configures the eddhe beginning
of your program.

3.1.3 Interrupts

A program for a wireless mote is in practice a sequence of sargll pieces of
codes executed when some event happens: e.g. when the isyttessed, turn on
the red LED. When an event happens in an electronic elemesitieuthe MSP430
(e.g. the button is pressed), this element informs the M8B%3hanging the elec-
tric state of the wire which connects this element to the MEP his wire is
connected to one of the ports of the MSP430 (e.g. port P1[2eicase of the but-
ton on the eZ430-RF2500). You need to program the MSP430 im gweay that
changing the status on port P1.2 generates an interrupt. Ahirerrupt is gener-
ated, the MSP430 stops its current execution (if any), aartissexecuting a specific
function called the Interrupt Service Routine (ISR) assedab that particular in-
terrupt. Once this function is finished (normally an ISR issansmall function), it
resumes its normal execution (if any).

You will write ISRs in section 4: when pushing the button (4t#ner interrupts
(4.4) and when receiving a packet at the radio (5.2).

3.1.4 Timers

When writing code, you may want to wait some time before doiagething
(e.g. when | receive a packet, wait 10ms, and send a replyepackhis can be
done using a timer, a specific component of the MSP430. Pdilysia timer is a

16-bit register which is incremented at each clock cy¢liee. once every:s with a
1MHz clock. It starts at 0, and counts up until a programmahlae, upon which
is generates a timer interrupt, reset to 0, and starts gayap again.

You will use timer in section 4.4 to have a LED flash at a givee.ra

3.1.5 1/O Functionalities
The MSP430 has 40 pins:

¢ 4 have analog functions to power the board;

e 2 are used for testing at the factory;

e 2 are used if an external crystal is used as clock source jvidigot the case on
the eZ430-RF2500 platform;

e 32 have digital functions.

The 32 digital pins are grouped into 4 ports of 8 pins eachhfét has a name in
the form .y, y represents the position of the pins within portAll pins can be
generic 1/0O pins, a number of 8-bit registers are used to gordithem:

PzDIR.y sets the direction of portaRy; output if Pr.y=1, input if Pz.y=0;
PzOUTy sets the state of portzR; when set as output;

PzIN.y reads the state of port:By when set as input;

PzIE.y enables interrupts on that port;

Each of these registers hold 8 bits, one for each pin. As #y&4DIR=0b11110000
means that pins P1.1 through P1.4 are input, while P1.5 ¢fiwr®1.8 are outputs.
To set/reset a specific pin, you need to use the binary openatesented in Fig. 6.

Note that most of the 32 digital pins can also be used for §pdanctions (SPI
interface, input for Analog-to-Digital conversion, .. sge [2] for detalils.

3.1.6 Low-Power Operation

As the MSP430 spends its time waiting for interrupts, it ipartant to reduce its
energy consumption during idle periods by shutting downdloeks you are not
using. The more clocks you shut down, the less energy yolbusepake sure you
leave on the clocks you need. There are four low power modesi(L. .., LPM4)
which shut down different clocks (details in [1]).

5 Strictly speaking, timers can be configured to count in up, down, or up/doades,
see [1]

6 Obr means that: is written in binary; Ox means that: is written in hexadecimal. We
thus have 0x1A=0b00011010. Use Windows Calculator in Scientific modguick con-
versions.

A = 0b01101001

~A = 0b10010110
A |= 0b0O0O0000 10 = A=0b011010 11
A &= ~0b00001000 = A=0b0110 0001
A A= 0b10001000 = A=0b11100001
A << 2 = A=0b101001 00
A >> 2 = A=0b00011010

Fig. 6. Binary operators used to set/reset individual bits.

In practice, you only need to leave on the auxiliary clockathtlocks a timer to
wake the MSP430 after some time. This is achieved by entésimgpower mode
3, by adding this line at the end of yomain function:

__bis_SR_regqister(LPM3_bits);

You now know enough about the M SP430 for thistutorial, but if you want to
work with the M SP430, you are strongly advised to read [1] and [2] (in that
order).

3.2 Crash Course on the CC2500

The CC2500 is the radio chip on the eZ430-RF2500. It functionth@n2400-
2483.5 MHz frequency band and provides an excellent optioWISN applica-
tions because of its low-power characteristics. This clip 20 pins:

2 for connecting a (mandatory) 26MHz external crystal desait;

2 for connecting the antenna,;

10 for powering the chip;

6 for digital communication with the MSP430 (to be detailedéction 3.3)

The chip contains 47 registers to configure operating freqgenodulation scheme,
baud rate, transmission power, etc. Because these registegsased during power
down, the MSP430 should configure all of them at startup. Hf3wands allow the
MSP430 to control the state of the CC2500 (transmit, power dogceive, ...).
The CC2500 follows a state diagram, as detailed in [3].

In practice, Texas Instruments provides some code whictstilte low-level details
of the CC2500 behind a higher level API. These drivers are gahteoSimpliciTl
project, which can be found online for free. We will use theffehe-shelf drivers
in this tutorial.

red LED (P1.0)
button (P1.2) green LED (P1.1)

CC2500

MSP430f2274

antenna

26MHz crystal for CC2500

extension pins

Fig. 7. The components of the eZ430-RF2500.

You now know enough about the CC2500 for thistutorial, but if you want to
work with the CC2500, you are strongly advised to read [3] (after having read
the documents about the M SP430).

3.3 The eZ430-RF2500 Board

3.3.1 Overview

Fig. 7 shows the different components on the eZ430-RF250patticular, some
of pins of the MSP430 are exported as extension pins P1 thred@. Note that
some of these pins may be unused pins of the MSP430, otheabeady used, but
duplicated as extension ports for debugging purposes.

3.3.2 Interconnecting the MSP430 with the CC2500

As show in Fig. 8, 6 wires interconnect the MSP430 with the CQ2300f them
form the SPI link, a serial link which enables digital comnuation. There is a
hardware SPI modem on each side of the link, the configurafiamich is handled
by the drivers.

The remaining two links are wires used by the CC2500 to wakdrapgtSP430.
That is, the MSP430 configures its ports P2.6 and P2.7 as, imgttinterrupts. It
then configures the CC2500 to trigger GDOO or GDOZ2 on a giventétgmncally,

when receiving a packet). This enables the MSP430 to enteéi3LRote that these
wires are also routed to extension port pins P13 and P14. filierslare used in
such a way that only GDOO is used for proper operation. Youtkas configure
GDO2 as you wish, and monitor its state with an oscilloscapextension port pin

10

Interrupt (GDOO)

hl
! 1
i AN
P Eo & 1 !
¥ o
1 1 uoigg ext. P13<"|
[s =zEEEZ ! |
i § 892823z r-» ext. P14
1 CogopLEEEBEE 1
| 200 ARNETD IR 1
| Y33riacacsa | g 1
1 p <9
O 39 38 37 86 85 84 83 32 23 %2 |
v o Y P— y Interrupt GDO:Y 2352
| | xour 222 29 || P1.0/TACLK JADC 10CLK 1 19 18 17 16 1
- = NP3 28 || P2.4/TA2/A4/VRER VeRER: n @) 1
i 15 AVDD
DvsS ()4 27 || P2.3/TA 1/A3/VREF /VeREF- ol 14 AVDD 1
FST/NMI/SBWTDIO [|5 26 || P3.7/AT LU I — T HERE 1
P2.0/ACLK /A0 [| 6 25 [] P3.6/A6 VOD & SRR B |
P2.1/TAINCLK /SMCLK /A1 [| 7 24 || Pa.5/UCA ORXD/UCAOSOMI
DCOUPL 5 R\ 11 AVDD
P2.2/TAQ/A2 [} 8 23 || P3.4/UCA OTXD/UCAOSIMO O ., 1
GND
P3.0/UCB 0STE JUCA 0t 22 || P4.7/TBCLK 92) c‘)]‘i 910 “Exposed die 1
P3.1/UCB 0SIMO /UCI O-DA-E 10 21 || P4.6/TBOUTHA15 E 8 q 8 é 8 attach pad 1
12 13 14 15 16 17 18 19 g12°8 |
doooroouons — L [2) 0
b 43 @ mm - = - = X
EEETE RS o g -
S = =
2 f O O @ T -
§ g fifeEk n
3 3 &G F 0
F X s T T
: fid Clock
8
5 .
:E Chip Selec
o 0o
g SPI SIMO

Fig. 8. MSP430 and CC2500 are interconnected by an SPI 4-wire linkn@ad two
interrupt lines (dotted).

P14.

Refer to [4] for details about the eZ2430-RF2500 platform.

11

4 Flashing LEDs. Simple Programming Examples for the M SP430 (hours
3-4)

This section will learn you how to use LEDs, interrupts amagis on the MSP430.
These are the basic building blocks which you will use inisech for communi-
cating with the CC2500. In this section, you wilbt use the CC2500.

4.1 A Steady LED

This example switches on both LEDs at node startup. It shows
you how to use the port registersPIR and P:tOUT. More-
over, you learn how to create a new project in IAR.

4.1.1 Creating a Projectin IAR
You will need to repeat these steps each time you create a mgecpin IAR:

e Connect the eZ430-RF2500 programming board to the computierzen IAR;

e ChooseCreate new project in current workspace ;

e LeaveTool Chain toMSP43Q as project template, choo€e > main; click
OK;

e Create a directory on your desktop in which you save your ptpje

e GotoProject > Option (Alt+F7), in General Option, choo$2evice=MSP430F2274
in Debugger, choosBriver=FET Debugger

Note that you will find the complete source code by openaty ezwsn.eww .
You will not need to create new projects.

4.1.2 Running the Code

e In IAR, right click on projectled_steady in the workspace and chos&et
as Active

e Compile and download the code onto the board (Ctrl+D).

e Let the code execute (F5), you should now see both LEDs on.

Some keys for understanding the code:
e Line1l: i0430.h contains all the macros used for translating human readable

values (e.g. P1DIR) into actual memory location. Right clicka430.h and
chooseOpen "i0430.h" to see its content.

12

no IEDs (MSP430 running) Current drawn

red+green LED

red LED

green LED

Table 2
Current consumed by the LEDs (Section 4.1).

e Line4: The MSP430 has a watchdog timer which resets the board iidtiseset
before it elapses. This way, if you code hangs, the boardmesind continues
functioning. For our simple examples, we disactivate thrgction by writing the
correct values into registsWDTCTL

e Line5declares P1.0 and P1.1 as output pins. This is done by tubiisi@ and
1to 1inregister P1DIR;

e Line 6 sets the output state of pins P1.0 and P1.1 to logic 1 (phiysmame-
where between 2.2V an 3V). This causes the LEDs, connectiénb$e pins, to
light.

e Line7loops, leaving the board running.

4.1.3 Energy Consumption
The goal here is to fill in Table 2:

e Comment out line 6 and run the board from the battery unit. biserésistor
jumper and the oscilloscope to read out the default energguaption (i.e.
MSP430 running, no LEDs, no CC2500);

e Repeat this by leaving line 6. By subtracting the results, yamu measure the
energy consumption of the LEDs;

e replace line 6 byP1OUT |= 0x01 andP1OUT |= 0x02 will leave on the
red and green LEDs only, respectively. You can now meas@edhsumption
of the LEDs independently.

4.2 Active Waiting Loop

This example shows a first way of measuring time.
__no_operation(); instructs the MSP430 to do nothing
during one cycle; by repeating this many times, time can be
measured. As this is neither accurate nor energy-efficent,
more elegant technique will be shown in Section 4.4.

13

paO—E20 pa—E2l —
T P pas—
Plo_%.ﬁ. E]]:ZO_G.N.D_

p150—E32UCBOSOMI E%@_m_uocaocm
PT7O—B0. UCBOSTE 5y g P21 UCBOSIMO

Fig. 9. The extension pins on the eZ430-RF2500 board, taken frarbptg that the pins
with even humber (shown on the right) are located on the edge of the lavatdyre thus
accessible more easily.

4.2.1 Running the Code

e InIAR, right click on projecied_loops in the workspace and choSet as
Active

e Compile and download the code onto the board (Ctrl+D).

e Let the code execute (F5), both LEDs should blink.

Some keys for understanding the code:

e Line9: the operaton = causes 1s to become 0s and vice-versa (aka toggling).
In case of our LEDs, it causes their on/off state to change,;

e Linel10: _ no_operation(); cause the MSP430 to do nothing for one cy-
cle.

4.2.2 Measuring Time

We want to measure time precisely with the oscilloscopes Thn, in theory, be
done by measuring the voltage at the LEDs, but it is hard td tie probes right.
We will therefore use extension pin P6 represented in Figsh®ch is connected to
P2.3 on the MSP430.

We will configure P2.3 to be output and toggle its state togettith the state of
the LEDs. Therefore:

e add lineP2DIR |= 0x08; afterline 7 to declare P2.3 as output;

e add lineP20UT A= 0x08; after line 9 to toggle P2.3 after toggling the LEDs;

e connect a probe of your oscilloscope to extension port Rfyrgt on extension
port P17

e power on the board, you're now able to read the duration bstveo toggles.

e reprogram your board with waiting values between 1000 ari)3@nd fill in
Table 3.

7 P12 is hard to reach, yet some oscilloscope will not require you to keegroluad all
the time. Try un-grounding after a while and, if you're lucky, you'll stilka clear signal.

14

threshold valuefor ¢ | measured toggle duration
1000

10000
20000
30000

Table 3
Duration when using an active waiting loop (Section 4.2).

4.3 Button-Driven Toggle Through Interrupts

The goal of this section is to start using interrupts throtigh
button on the board. You will program the board so that the
LEDs change state when the button is pressed. You will also
measure the energy consumed when the board sits idle, and
when it enters a low-power mode.

4.3.1 Running the Code

¢ In IAR, right click on projectled_button in the workspace and cho&et
as Active

e Compile and download the code onto the board (Ctrl+D).

e Let the code execute (F5), press the button on the board BEbs'Lstate should
change.

Some keys for understanding the code:

e Lines6and 7 declare P1.0 and P1.1 as outputs (for the LEDs), and P1.pat in
(for the button);

e Line 8 activates an internal resistor on P1.2. This is needed fattarofor the
signal to be cleaner when the button is pressed; i.e. oteenthie P1.2 constantly
floats between high and low state. This is only needed foohatt

e Line9enables interrupts on P1.2.

e Line 10 enables interrupts globally.

e Line 13 and 14 declare that this function should be called when an interofip
type PORT1_VECTORappens; the nanteort_1 chosen has no importance.

e Line 16 resets the interrupt flag generated (mandatory otherwisdutiction
will be called again right after it finishes execution).

15

Mode current drawn

Active mode

(active: CPU and all clock)

LPMO mode
(active: SMCLK, ACLK; disabled: CPU, MCLR)
LPM3 mode
(active: ACLK; disabled: CPU, MCLK, SMCLK)
LPM4 mode

(disabled: CPU and all clock)

Table 4
Current consumed by the LPM modes (Section 4.3).

4.3.2 Low-Power Modes

As such, the board sits idle while waiting for an interrupth@ppen with the
MSP430 on (which continuously executed line 11). After nueiag this current,
you will change the code so as to enter low-power mode insiésaitting idle.

The goal here is to fill in Table 4:

¢ Using the battery unit, the resistor jumper and the osatpge, measure the cur-
rent consumed in this mode (make sure that the LEDs are offiytie measure).

e Change line 10 by bis_SR_register(GIE+LPMO_bits); . This in-
structs the MSP430 to enable the interrupts globally, arehter LPMO mode
immediately. Only an interrupt can wake the MSP430.

e Remove line 12 which can never be reached.

e Measure the current now, make sure that LEDs are again off.

e repeat with LPM3 and LPM4.

Which mode is more energy-efficient? What prevents us to ema¢mntode all the
time?

4.4 Timer-Driven Toggle Through Timer Interrupts

We will explore a energy-efficient way of measuring time py
using timers. A timer is a register which counts up to a cer-
tain number at each clock tick. During this, the MSP430 ¢an
switch to a low-power mode. Each time the timer threshold is
reached, a timer interrupt wakes the MSP430, which toggkes$wo LEDs.

16

TACCRO value | measured toggle duration
500
1000
10000
20000

Table 5
Duration when using timers (Section 4.4).

4.4.1 Running the Code

e InIAR, right click on projected_timer inthe workspace and choSet as
Active

e Compile and download the code onto the board (Ctrl+D).

e Let the code execute (F5), both LEDs should blink.

Some keys for understanding the code:

e Line7 switches on the ACLK by sourcing it to the VLO, a very low poweyss
tal oscillator inside the MSP430, different from the morewate and energy-
hungry DCO (Digitally Controlled Oscillator). The DCO drivédseetMCLK and
the VLO the ACLK. ACLK is used for the timer; MCLK for executing de.
When there is no code to be executed (i.e. when waiting forruns), a low-
power mode (in which DCO is switched off) can be used.

Line 8 enables interrupts for Timer_A.

Line 9 sets the value up to which Timer_A will count.

Line 10tells Timer_A to count upNIC_J each time ACLK ticks TASSEL _1).
Line 11 enables interrupts globally and enters LPM3. Note that LR&&e
only ACLK running, which is exactly what we need because oun€liA runs
off ACLK.

4.4.2 Measuring Time
As in Section 4.2, we use extension pin P6 to measure timelgxaherefore:

e add lineP2DIR |= 0x08; after line 6 to declare P2.3 as output;

e add lineP20UT A= 0x08; after line 16 to toggle P2.3 after toggling the
LEDs;

e connect a probe of your oscilloscope to extension port Rfyrgt on extension
port P1. Power on the board, you're now able to read the durdtetween two
toggles.

e reprogram your board with TACCRO values between 1000 and 30dD0y
Table 5.

17

According to Table 5, at what speed does the VLO clock - whiokks ACLK -
run??

9 In theory, the VLO runs at 12kHz; the exact value depends on the vaifahe batteries
and on the temperature.

18

5 Enabling Wireless Communication (hour 5)

In this section, you will learn how to use the CC2500 by sendiagkpts on a
given frequency and at a given transmission power. You ved the oscilloscope
to visualize the current consumption under these diffecases.

5.1 Using the Texas Instruments Drivers

Texas Instruments has developed a set of drivers for the@®RF2500 as part of
the simpliciTl project, freely available online. Thesewrs are also contained in
thesource_code/drivers folder for this tutorial. You will use them without
changing the files.

¢ In IAR, create a new project as instructed in Section 4.1.

e Go toProject > Options (Alt+F7), then toC/C++ compiler . In the
Preprocessor tab, add the following lines in the Additionalude directories
text field. This tells IAR to look into these folders when yoglude files in your
source code.
$PROJ_DIRS\..\drivers\bsp
$PROJ_DIRS\..\drivers\bsp\drivers
$PROJ_DIRS\..\drivers\bsp\boards\EZ430RF
$PROJ_DIRS\..\drivers\mirfi

¢ In the defined symbols text field, add the following line. Ttedis the drivers
you have a CC2500 radio chip on your board.

MRFI_CC2500
¢ in the Workspace panel, right click on the name of your pripj@ed useAdd >
Add Group... to make the following group structure:
- Application
- Components
- bsp
- mrfi
- Output

e useAdd > Add Files... to add filedsp.c ,bsp.h andbsp_macros.h
under groupbsp . Similarly, add filesmrfi.c , mrfiih andmrfi_defs.h
under groupmrfi . Add your C code as a file under groApplication

Note that you will find the complete source code by openaty ezwsn.eww .
You will not need to create new projects.

19

5.2 Simple Tx/Rx

This first example involves two boards which stay in Rx made
by default. When you press a button on either one, it sends a
message and toggles its green LED; the board which receives
the message toggles its red LED. Once this is functional, you
will play with the Rx/Tx frequency.

5.2.1 Running the Code

¢ In IAR, right click on projecttxrx_simple in the workspace and choSet
as Active

e Compile and download the code onto both boards (Ctrl+D).

e Switch both boards on (one with the battery unit, the othé¢h wie USB slot of
your PC); when you press one’s button, the other’s red LED Ishioggle.

The packet format is shown in Table 6 (p.21). A variable oktypfiPacket_t
is a structure containing two parts:

e packet.frame is the frame to be transmitted. The first byte is tength
of the payload together with source and destina#aldress . With the cur-
rent driver implementation, addresses are coded on 4 bgelsthe maximum
Payload length is 20 bytes. By default, the CC2500 does not perform addre
filtering, so in practice we will not care about the valueshaf address fields.

e packet.rxMetrics are statistics on the last received packet, i.e. it only
makes sense on received packet. The first byte is the Receiyedl Strength
Indicator RSSI) at sync word detection. This is the signal level in dBm. The
next bit indicates whether the Cyclic Redundancy Ché&R@ was successful
(by default, the CC2500 is configured to reject packets withuoosssful CRC
check, so in practice this field will always be 1). The lasttg bre the Link Qual-
ity Indicator LQI). The LQI gives an estimate of how easily a received signal
can be demodulated by accumulating the magnitude of the leetoveen ideal
constellations and the received signal over the 64 symbulsediately follow-
ing the sync word.

Some keys for understanding the code:

e Line 4 is a function from the drivers (right-click on it, and choo&® to
definition of "BSP_lInit()" if you want to know) which disables the
watchdog, initializes the MCLK at 8MHz, sets LED ports as ao$pand the
button port as input. Note that it does neither enables tteerial resistor of the
button, nor enables interrupts. This is done on lines 5 and 6.

e Line7. MRFI stands for Minimal Radio-Frequency Interface; functatarting

20

Length Source

Destination

Payload
(Length-8 bytes long)

packet.frame
0 8 16

RSSI [CRCLQI

packet.rxMetrics
Table 6
Packet format.

with MRFI are used to drive the CC2500 radio chipRFI_Init() initializes
the 6 wires between the MSP430 and the CC2500, powers-up the C@280
configures the CC2500 47 registers and turns on interruptstiier@ C2500;

e Line8 wakes up the radio, i.e. it turns on the 26MHz crystal attadhwithout
entering Rx or Tx mode;

e Line 9 switches the radio to Rx mode; from this line on, it can recpaekets,
in which case the interrupt functiodRFI_RxCompletelSR 1° is called.

5.2.2 Choosing a Frequency

The CC2500 can transmit at any frequency on the ISM band 24B{88:5MHz.
The chip divides the 2400.0-2483.5 MHz spectrum titannels separated by a
tunablechannel spacing . By default, channel spacing is 200kHz; with default
configuration, channel 0 is 2433.0Mhz, channel 1 is 24332Mhd so forth. The
channel is configured through tHANNRegister.

In a lab environment, as you don’t want to interfere with otfp@ups, each group

needs to pick a different channel. To avoid co-channelf@tence (a channel may
"leak" into its neighboring channels, leading to interfaey space frequencies as
much as possible.

e add after line 1 the following line. This way, you have acdes®w level driver
functions which enable you to write directly the CC2500 regist
#include "radios/familyl/mrfi_spi.h"

e add after line 7 the following line, replaciax10 by the frequency you have
chosen. This programs tiBHANNRegister of the CC2500. Be aware that values
aboveOxFC are prohibited because the corresponding frequency isdbR3.5

10’ Note that the real interrupt function with the uspahgma declaration is contained in
the drivers

21

MHz:
mrfiSpiWriteReg(CHANNR,0x10);

When you have reprogrammed both boards, you should be abrimuanicate
without interference.

You will need to add these lines for all subsequent exerdizésolate you from
interference from other groups.

5.3 Continuous Tx/Rx

We abandon the push button, and ask one board to sent mes-
sages continuously, while the other receives. Once this ¢on
stant flow of data is established, you will be able to see the
energy consumption of the transmitting and receiving beard
for a number of settings of transmission power.

5.3.1 Running the Code

e Start from the code from the previous Section.

e Comment out line 19; this means that once you push the butterhdard will
start sending an infinite number of messages. This is becauselon't clear
the interrupt flag, i.e. when your code leave the Interrupwige Routine, it
immediately re-enters because, according to the inteftagt there is still and
interrupt pending.

e Reprogram both boards, switch them on, and push one button.

5.3.2 Energy Consumption

e Comment out lines 14 and 23 so as to be swtto measure the energy con-
sumption of the LEDs;

e Use the oscilloscope to measure the energy consumption;

e Make sure you obtain results which are close to Fig. 10.

5.3.3 Impact of Transmission Power

We want to measure the impact of the transmission power ocuient consump-
tion of the board. Therefore:

e keep the following line:
#include "radios/familyl/mrfi_spi.h"

22

0.800ms 0.740ms
0.280ms 1.240ms 0.360ms 1.24ms

Tek 1L ® ol M Pos: 1.680ms ACOUIRE Tek Stop M Pos: 1680ms ACOUIRE
- z
e oo
25.2mA
S Ju
Peak Datect 225mA__ | Peak Detect
11.4mA R 195mA™
520mA—— 1. M’s 17.1MA—s=eeel nws
3 M 500 0 He M 500 s
Refa 1.00% 500.us 22-Jan~-03 1450 Refi 1.00% S us 22-Jan=-09 14:48
TDS 20228 - 2:50:08 PM 1/22/2009 TDS 20228 - 2:48:38 PM 1/22/2009
(a) Transmitter (b) Receiver
Fig. 10. Energy consumption with continuous Tx/RX.
register | power current drawn
0x84 -24dBm
0x55 -16dBm
0x97 -10dBm
O0xA9 -4dBm
OxFE 0dBm
OxFF 1dBm
Table 7

Impact of transmission power on current.

e add after line 7 the following line. This program tRATABLEregister of the
CC2500, which is responsible for the transmission power ofdlé. You can
put values betwee@x00 andOxFF; these values map to a transmission power,
as shown in Fig. 7.
mrfiSpiWriteReg(PATABLE,OxFF);

e leave lines 14, 19 and 23 commented. Use your oscilloscopgstmlize the
maximum energy consumed. Repeat this for different valuédABLE. Fill
in Table 7 (p.23).

5.4 Wireless Chat

Now that you can send packets between nodes, you will| put
content into those packets. Data is entered through the key-
board and sent over the air when pressing enter. The receiver
prints the received data on the screen, building a wireleat ¢
Note that you need two board and two USB programmers.

23

5.4.1 Running the Code

e In1AR, right click on projecttxrx_chat inthe workspace and choSet as
Active

e Compile and download the code onto both boards (Ctrl+D).

e Connect each board to a computer using the USB programmeipamdRuTTY.
When hitting enter, the message should appear on the otlees sadeen.

Some keys for understanding the code:

e Lines 9-15 configure the UART module used to communicate over the serial
port. In particular, line 17 enables interrupts for incogtraffic, i.e. when you
write onto PUTTY.

e Lines21-36. FunctionMRFI_RxCompletelSR is called when a packet is re-
ceived. The red LED is switched on (Line 26), and an empty wustring is
modified with the received characters before being sent.

e Lines 37-55. FunctionUSCIORX_ISR is called when you enter a character on
PUTTY. This 8-bit character is stored at the right byte in thitgoing packet
(line 45). When you hit enter or you have type 29 consecutiagaitters (44),
the frame is sent and the output buffer is initialized forseduent text.

24

6 RF Measurements (hours6-7)

Because seeing is believing, the goal of this section is fatgsee what a RF envi-
ronment looks like. You will first build a spectrum analyzewisualize to RF noise;
you will then investigate on the relationship between RS$I distance between
sender and receiver, and on the relationship between RS3ihnmobability.

6.1 The importance of the CRC

Each packet is appended with a 16-bit Cyclic-Redundancy-
Check which is able to detect accidental alteration of data gu
ing transmission. CRC is computed over the data portion of
the frame. Upon receiving a packet, the CC2500 recomputes a
CRC over the received data and compares that values with thieed(CRC. A
mismatch indicates a corrupted packet; by default, the CC2866tly drops

such a packet. You will disable CRC and see how often corrupaekgis oc-
cur.

6.1.1 Running the Code

e In IAR, right click on projecttxrx_crc in the workspace and choSet as
Active

e Compile and download the code onto both boards (Ctrl+D).

e Connect one board to a computer using the USB programmereaddts output
using PUTTY.

e Power the other with the battery packet and press the buttmnshould read
'abcdefghijklmnopgrstu’ on PUTTY.

e Repeat multiple times this by moving away the sending node;sfwmuld see
some alterations to the output text. If CRC was enabled, thedespwould have
been dropped by the CC2500.

e You may wish to speed things up by commentling line 37 on timelses side
so one press of the button generates an infinite stream oétgadimilarly, you
may wish to reduce its transmission power.

25

X eZWSN sprectum analyzer S S B

802,11b/g ch,7 802,11b/g ch,5 202,11k ch,11
202,11b"g ch.B a02,11b'g ch.B 202,11b"y ch.10

RSSI (dBm)
—

o1 TP i

2430 2430 2440 2440 2450 245? 2460 2480 2470 2475
frequency (HHz
2407, 21, 1,.44935

Fig. 11. Output of the spectrum analyzer in Section 6.2; one transmissiomisy go on
channel 0.

6.2 Creating a Spectrum Analyzer to Measure Noise

The CC2500 can easily change its operating frequency,
through the use of channels. For each of these channels, the
CC2500 can sense the level of electro-magnetic noise, in
dBm. The goal of this section is to build a spectrum analyzer
by continuously plotting noise vs. frequency. We therefmse a Python script
running on the host computer.

6.2.1 Running the Code

e Program a single board using the projeack_noise in IAR; close IAR.
e Connect that board to the host computer, and find the CQbft it is connected

to, as instructed in Section 2.3. Use PuUTTY to read from thaM@@ort; you
should see a continuous series of 200 numbers appearing.

Start an X server onto the host computer using Xlaunch.

Start a Cygwin Bash Shell and go into the folder containibgx_noise.py

export DISPLAY=127.0.0.1:0.0

cat /dev/ttyS y wherey = = — 1. You should see the same content ap-
pearing as when using PuTTY. If not, read the COpbrt with PUTTY and try
again.

cat /dev/ttyS y| Jtxrx_noise.py

A window appears which looks like the one depicted in Fig. 11.

Some keys for understanding the code running on the mote:

Line 6. print_rssi() is a function which prints the RSSI value read from
the CC2500 onto the serial port which is initialized betweeedi 18 and 25.

26

TXString() is afunction provided ilbsp_board.c

e Lines 18-25 initialize the serial port, which enable your code to outpes
of text using theTXString() function. These lines can then be read using
PUTTY.

e Line27instructs the MSP430 to stay in active mode all the timenio¢to enter
any low power mode.

e Lines28-37is aloop which continuously scans through channels O-2@@rd-
ing and outputting the RSSI valugIRFI_Rssi() is a function declared in the
drivers.

The python script continuously feeds the GNUplot environhwath data received
from the standard interface. Note that the content of thiet @OMz port if piped
to this python script.

6.2.2 Refresh Rate of the Spectrum Analyzer

¢ in the code, add after line 25
P2DIR |= 0x08;

¢ in the code, add after line 28
P2DIR A= 0x08;

e using the oscilloscope, measure on extension port P6 thestefate of the fre-
guency analyzer.

e What is the refresh rate ?

e move the last added line just after line 29. You now measwditie it takes for
the mote to sample the noise level on one channel, and moke tther.

¢ What value do you measure ?

6.2.3 Testing the Spectrum Analyzer

e Reprogram a second board using the code described in Se@i@o3hat it con-
tinuously sends data. Start the continuous sending andligsuhis transmission
on the spectrum analyzer (at channel O by default).

e Using Section 5.2.2, change the operating channel, ancheaeplications on
the spectrum analyzer.

e You can also see the impact of a running microwave oven.

27

6.3 RSSI vs. Distance

In this Section, we want to draw experimentally the RSSI |re-
ceived as a function of distance between sender and receiver
Because of the random nature of propagation, especially|in a
closed room, you will see that this relationship is not gfin&i
forward to predict. It should be clear that repeating thesasurements under
different conditions yields very different results.

You will modify the code for the mote taken from Section 6.2nder to read 200
times the RSSI value from the same channel. A python scrigttihéin average
those read values. To this end:

¢ Inthe code used in the previous section, comment out lin&2® mote will now
read the RSSI 200 times on channel 0.

e Reprogram the receiver board and visualize the values datpah the COM
port using PUTTY (see Section 6.2). We are interested irutatiog the average
value of each 200 point line.

e run the python script
cat /dev/ttyS y| Jtxrx_rssi_dist.py
wherey = x — 1. This script outputs the average value of the RSSI 200 reading

e Reprogram a second board using the code described in SecBipadbthat it
continuously sends data, on channel 0 and with a transmigsiover of 0dBm
(see Section 5.3.3).

e Start the continuous sending and see how the RSSI decreatbesteensmitter
is moved away from the receiver.

Fig 12 plot the evolution of RSSI as transmitter and receivaarls are parted
away, in three different directions. Because these measntsmare not done in an
infinite open space, shadowing and fading effects introdaodomness into the
relationship between RSSI and distance.

6.4 Channel Success Probability

You have seen that the strength of a link can not be easily
predicted as a function of the distance between sender|and
receiver, especially indoors. You will now discover theare
tionship between the RSSI of a link and it's probability. We
define link probability as the portion of the messages sehéwender which
are successfully received at the receiver. You will see linkatprobability is

strongly correlated to the RSSI.

28

-60

T 5 T
experiment 1 —+—
experiment 2 ---x---
experiment 3 ---%---

-65 |- %

70 |

75 +

RSSI

-80 |

-85 |

-90

1 1 1 1 1 1 1
0 05 1 15 2 25 3 35 4
Distance between sender and receiver (m)

Fig. 12. Evolution of RSSI with distance.

The experimental setup goes as follows. We will use to boardender and a re-
ceiver. The sender will continuously sends bursts of 100samgss, each containing
a counter which increases from 1 to 100. Out of those 100 sessages, the re-
ceiver may only receive 40. It will count the number of reegivnessages until the
counter reaches 100, or until the counter loops back to aemalue. When this
happens, the receiver outputs the number of received messag) the probability
of the link.

At the same time as the receiver counts the number of thevextenessages, it
calculates the average RSSI over those 100 messages, wingtpitts together
with the link probability. Finally, to allow for the receivéo output these statistics
(which takes some time), after each burst of 100 messagesetider sends 20
messages with counter set to 101.

To implement this:

e Reprogram two boards with projesirx_probability

e attach one board to the host computer, and read the output@OMz using
PUuTTY;

e power the second board from the battery unit and press theftitis will cause
that board to transmit the bursts of 100 messages;

e you can not read the statistics; close PUTTY when done;

e in cygwin, enter the following command
cat /dev/ttyS y> probability.txt
wherey = x — 1. This logs the output in a file; move the transmitter away from
the receiver to record data for low RSSI values;

e in cygwin, enter the following commands
gnuplot
plot "probability.txt" using 1:2

29

P
+
++]
]
4t
++]
++
"
+
++H

]

+ o+
++

08 |

+ b b+

0.6 [

S b b b b A]

0.4 |

Link Success Probability
T o e

02 |

L L L L
-120 -115 -110 -105 -100 -95
RSSI

Fig. 13. Probability of Success as a function of RSS.

This plots the probability as a function of the RSSI, make soii@btain a graph
similar to the one in Fig. 13.

Some keys to understand the code:

e Line55. When the button is pressed, the board continuously sendss lmirs00
messages followed by 20 "guard” messages. Note that lineca®rimmented out,
so this function is continuously repeated.

e Line 61. The format of a packet is depicted in Tablepacket.frame[0]
is the length field, which sets the payload length at 3 bytesi(num accepted
value).

e Line63. packet.frame[9] is the first byte of the payload.

e Line 43. bool_counting indicates whether the statistics have already been
printed out (without this semaphore, as there are 20 guassdages, the statistics
would be printed out 20 times)

As shown in Fig. 13, link probability is closely correlatedRSSI. The theory tells
us that, at very low RSSI, link probability is very close to Oyary high RSSl it is

close to 1. Between those extremes, there is a linear slopensiks an overlay in
Fig. 13.

30

7 Implementing A Preamble Sampling MAC Protocol (hour 8)

Preamble-sampling is a technique used to reduce the energy

consumption of the MAC protocol in a wireless node. The

goal of this section is to implement a variant of preamble-sam

pling called MFP, to measure the energy consumption of|the
transmitting and receiving nodes, and to predict the fifetiof a node when
powered on two AAA/LRO3 batteries.

7.1 An Introduction to Preamble Sampling

Nodes using preamble-sampling are not synchronized.ddsteodes periodically
listen for a very short time (called Clear-Channel-AssessnuerCCA) to decide
whether a transmission is ongoing. We call check inter@/dl) the amount of time
a node waits between two successive CCAs. The sender needk¢osona the
receiver node is awake before sending data; it prependsng)(jmeamble to its
data. By having the preamble at least as long as the wake-igrp#re sender is
certain that the receiver will hear it and be awake for raogithe data.

Fig.14 is a chronograph depicting the radio state of ne@ad its three neighbors
A, B andC'. A box above/under a vertical line means the node’s radiissmit-
ting/receiving, respectively. No box means the radio is Aff nodes sample the
channel forD,., seconds everg'l seconds.

preamble data
S I |
cl |
A I
L] [I
B I
O | |
C I
L] | |
—_—
Dcca Ddata

Fig. 14. Basic preamble-sampling.

In this Section, you will implement a simplified version oepmble sampling:

¢ there isno data;

e the preamble is cut into a seriesmafcro-frames. Each micro-frame contains a
counter indicating how many micro-frames still remain. Acroiframe is sent
everyT,,; seconds, and lasts far,, .

31

7.2 Running the code

The experimental setting goes as follows. You will have twards, both sampling
periodically sampling the channel. When they are not samggle channel, the
CC2500 is switched off and the MSP a enters low-power mode. Whamyess
a button on one board, it sends a preamble cut into 50 miarods; the receiver
hears a micro-frame and keeps listening until it hears thieoliae.

To this end:

e Program two boards with projebtrx_preample_msp ; one will be the trans-
mitter, the other the receiver.

e Plug in one of the board into the computer and use PuTTY to fead its
COMz port; this will be the receiver.

e press on the transmitter’s button, you should réadn your screen.

Some keys for understanding the code:

e The microcontroller handles two timeouts, one for meagufid, the other for
D...,. Those timeouts are sourced by two different clocks: a fadtaccurate
clock for D..,; a slower, less accurate but extremely energy-efficiertkcfor
C1. The fast clock is the Digitally Controlled Oscillator (DCO dimer A)
while the very-low-power, low-frequency oscillator (VLOhadlimer B) is the
slow clock. Becaus€'! is triggered by the slow clock, that clock stays on all the
time. Only when the slow timeout expires does the microadetr start the fast
clock to clock the fast timeoutl{,.,); and stops it when that expires. The radio
is on only duringD...,.

e Line 38 initializes the slow timeout on Timer A

e Line39initializes the slow timeout on Timer B

e Line42. Because the slow clock runs all the time, the board can onér &mM3
which leaves the VLO clock running.

e Line71. Every time the slow timeout triggers, the CC2500 is switchethdRx
mode (lines 74-75); the fast timeout is started (line 769l la@cause it is clocked
by the DCO, LPMO mode is entered which leaves the DCO running {i7).

e Line 79. When the fast timeout expires, this timeout is stopped (ligg the
CC2500 is put to sleep (line 83) and the LPM3 mode is resumeel §Hi).

e Line58. When the button is pressed, the board transmits 50 microesagach
containing a decrementing counter.

7.3 Timing issues: length of the preamble
e Use the oscilloscope to visualize the energy consumed byaadbgou can

clearly see the periodic wakeup of the CC2500 (see Fig. 15ripant).
e What is the time between two successive wake-ups?

32

Transmitter

18 | Receiver

Current Consumption (mA)
(%]

0 b
-150 -100 -50 0 50 100 150
Time (ms)

Fig. 15. Energy consumed by the transmitter and the receiver in preanmbj#irsg. To
function, the length of the preamble needs to be larger than the check intarva

25 -H T T o 1 L

20

15

10

Current Consumption (mA)

0 1 1 1 1 1
43.5 44 44.5 45 45.5 46 46.5

Time (ms)

Fig. 16. A singled-out micro-frame.

e Push the button and capture the energy consumed when theéiboartransmit
mode (see Fig. 15, upper part). You can see the series on 50fraiwes sent.

e By zooming in, what is the duration of one micro-frame? Whahéduration of
the preamble? Is that long enough? Why?

7.4 Timing issues: first micro-frame heard

Because the receiver periodically samples the channel,ittre+iname of a pream-
ble it hears first can be any of the 50. You will now visualizaathmicro-frame is
heard first. To this end:

33

25

Al B C %
20 -

15 -

10

Current Consumption (mA)

Time (ms)

Fig. 17. Energy consumption measured when sampling the channel.

e move line 51 up two line, so that the counter value gets piifde every micro-
frame received;

e after reprogramming a board, connect it to the host compuneread its COM
port with PuTTY,;

e press on the second boards button, you should now read a sedecrementing
numbers such as:
30 29 28 25 24 23 20 19 18 15 14 13 10 09 08 05 04 03
The first number you read is the first micro-frame receivedgB6), which is
not necessarily the first one sent (h&fB.

¢ the sequence may not be continuous as in the example giver.ahiy?

7.5 Measuring the Energy Consumption

e Use the oscilloscope to visualize the current drawn by avecboard.

e Zoom in onto a wake-up period and use the averaging functioyoorr oscil-
loscope (on the TDS2022B preasquire > average) to average over as
many samples as possible.

e Freeze the screen once this is done, you should obtain ansdose to Fig. 17.

e You easily see the different phases when the CC2500 is turnethemrcurrent
drawn during these phases and their length. Fill Table 8.

¢ In Table 8, calculate the average current consumption obtieed when it is
listening, and the expected lifetime.

34

Phase duration| av. current

idle

A | pcontroller startup

B | radio frequency calibration

C | reception mode

D | entering sleep mode

aver age current consumption

Lifetimewith 2000mAh

Table 8
Duration and average current consumption of the different phasssnaa in Fig. 17.
Measurements averaged over 128 samples.

35

8 A full WSN example

Projecttxrx_wsn is a complete WSN example which implements a complete
communication stack for WSNs, using gradient multi-hopirautA gradient rout-

ing protocol assigns a scalar value to each node, which wésakight Heights

are assigned in such a way that they increase with distaree¢otral node. Dis-
tance is calculated using a cumulative cost function baseel tn hop count. The
forwarding process selects the next hop as the neighborhwdifers the largest
gradient, i.e. the neighbor with lowest height.

In the implemented protocol stack, the application layeregates sensed data to be
sent to a sink node, by using on-board Analog-to-Digital Goswn. The routing
layer is responsible for updating the nodeigHeight ; the MAC layer performs
on-demand neighbor discovery and uses preamble sampliegéogy-efficiency.

The execution timeline of the implemented protocol is pnése in Fig. 18 for an
example topology of 3 nodes. By default, nodes perform préasampling. When

a node wants to send a message (et starts by sending a preamble as long as
the check interval('I) to make sure all neighbors hear that preamble. For efficient
handling by a packet radio, the preamble is cut into a sefiesiaro-frames UF,
each containing a counter indicating the number of UF stildme. Upon hearing

a UF, a receiving node turns its radio off and sets a timer tibcchwnto receive
mode after the last UF. At that moment, the sender indicétesltrration of the
neighbor announcement window to follow in a CW packet.

Receivers choose a random backoff for sendingl@ii message inside the neigh-
bor announcement window and sleep the rest of the time; tiesdistens for the
complete announcement window and populates the initiaptg neighbor table
as it receivesAC' K messages.

After the neighbor announcement window, the sender updistesyHeight by
the minimum value of its neighbors’, incremented by one, seldct its neighbor
with smallestHeight . It inserts this information into the DATA packet header
which it transmits. The destination node receives the wpalket while the non-
destination neighbor switches to sleep after the headerd€&ktination replies with
a final acknowledgment FIN; all nodes resume preamble sampli

The source code is contained in projeatx_wsn . By default, each node trans-
mits every 5+rand(5) seconds at -16dBm, on channel 0. Thergidk prints the
content of the received packets.

36

preamble sampling! data exchange : preamble sampling

' wake-up - neighbor announcement ‘data: final E ‘é UF
' j routing decision . :ACK : £ oW
A AL \H ; 2 B8 ack
(depth 8] I I [|% @l oata
sender) ! : ! g FIN
B : 3] L :
(depth 9) I ! U 0 I] I
c : ‘ || S

(depth 7) I I I] I I

Fig. 18. Timeline illustrating the execution of the protocol stack. The x-aysesents
time; a box above the line indicates that the radio is transmitting; a gray/white @t un
the axes means that the radio in receiving/idle listening, resp.; no box mearedib is

turned off.
-30
124 084
-40

4 -50

- - -60
126

F 470

238 [80

112
4 -90

206 >
sink 143
114 082 /

194 E o -100

% -110

Fig. 19. An example outputted graph with 12 nodes. Links interconnechineig; colors
indicate link quality in dBm.

8.0.1 Running the Code

Unfortunately, projectxrx_wsn can not be compiled with the free edition of IAR
because code size itlarger than 4kB. Projeats wsn_node andtxrx_wsn_sink
contain already compiled binary code for nodes and sinkeets/ely!! .

e Program only one board for the whole network using prdjest wsn_sink
the others using projettrx_wsn_node

e Use PUTTY to read from the sink node and switch on the otheesnot

e enter commandat /dev/ttyS x | Jtxrx_wsn.py on the computer
hosting the sink node. You should see a graph similar to Big. 1

e You may move nodes away from each other to obtain a multi-maptg

I you have a full edition of IAR, you can use projebtrx_wsn directly. You will
need to modify booleals_SINK_NODE in source fileonehopmac.h to program either
nodes or sink.

37

References

[1] MSP430x2xx Family User's Guid2008, SLAU144E [available online].

[2] MSP430x22x2, MSP430x22x4 Mixed Signal Microcontrplledy 2006, SLAS504B
[available online].

[3] CC2500, Low-Cost Low-Power 2.4 GHz RF Transcei2é07, SWRS040B [available
online].

[4] eZ2430-RF2500 Development Tool User's Guidexas Instruments, June 2008,
SLAU227C [available online].

38

